- 1. Explain the following concepts, use drawings and equations when adequate.
 - a) Construction and operation principles of a synchronous generator. (Stator, rotor, windings, frequencies, armature current, etc...) (2 p.)
 - b) List the loss components in an asynchronous motor. Explain why and where they occur. (2 p.)
 - c) Explain the three running modes of operation of an induction machine by drawing the Torque-Speed/Slip curve and give the range of the slip for each mode of operation (2 p.)
 - d) What are the necessary conditions for connecting (synchronizing) a running synchronous generator to the infinite bus? What happens if any of them is not satisfied and why? (2 p.)
 - e) Explain how the voltage builds-up in a self-excited (shunt) DC-generator and list the three conditions necessary for this voltage to build-up (hint: magnetization curve, remanence) (2 p.)
 - f) Explain how the power factor of a synchronous machine can be controlled, while the machine is delivering a constant active power. Draw the phasor diagram of the machine at unity power factor and lagging power factor (hint: use the terminal voltage as reference, 0 deg) (2p.).
- In the simplified inductor of the figure, the relative permeability of the core is 1200. All dimensions are in centimeters, and the magnetic material has a square cross section area (2x2 cm). Neglect fringing and magnetic leakage. Use the dashed line as the average magnetic flux path.
 - a) Draw the magnetic equivalent circuit of the inductor and calculate its parameters (2 p.)
 - b) Calculated the air gap flux and flux density (2 p.)
 - c) Calculate the force acting on one of the air gap ferromagnetic surfaces. (2 p.)
- 3. A three phases, 250 kW, 460 V, 60 Hz, eight poles, star-connected induction machine is connected to a 460 V infinite bus and is running as a generator at a slip s = -2,5%. The equivalent circuit of the machine (Fig. 3) has the following parameters $R_1 = 0.015$ W; $R_2 = 0.035$ W;
 - $X_1 = 0.145 \text{W}; \ X_2 = 0.145 \text{W}; \ X_m = 6.5 \text{W}$
 - a) Determine the speed of the rotor (2 p.)
 - b) Determine the power delivered to the infinite bus and the power factor (2 p.)
 - c) Determine the efficiency of the generator. The rotational and core losses are 3 kW (2 p.)
- 4. A 1 MVA, 3 phases, 2300 V, 60 Hz, 10 poles, star-connected cylindrical-rotor synchronous motor is connected to an infinite bus. The synchronous reactance is 4,23 W. The synchronous motor delivers 746 kW and operates at 0,85 power factor **leading**. All losses may be neglected.
 - a) Determine the armature current I_a (2p)
 - b) Determine the excitation voltage $E_{\rm f}$ and the load angle d. (2 p.)
 - c) Determine the maximum power the motor can deliver for the excitation of part (b). (2 p.)

ELEC-C8407 Electromechanics, examination 13.12.2016, 12.00-15.00, S3. Evaluation:

Grade	Lower limit	Upper limit
0	0	13
1	14	16
2	17	19
3	20	22
4	23	26
5	27	30

Some useful formulas and drawings:

Magnetic reluctance: $R = \frac{l}{m^{\Delta}}$

Magnetomotive force: F = Ni

Force pressure: $F_{\rm m} = \frac{B_{\rm g}^2}{2m_{\rm g}}$

Speed of AC-machine: $n = \frac{120 f}{p}$ (*p* is the number of poles!)

Slip of induction machine: $s = \frac{n_s - n}{n_s}$

Equivalent circuit of a synchronous motor:

Convention: lagging reactive power positive -- > phase angle of current negative

AC active power: $P = 3VI\cos f$