## ELEC-E-5440 Statistical Signal Processing. Final Exam December 14, 2017

|  | 1. | Define or | explain | briefly | the | following | concer | ots |
|--|----|-----------|---------|---------|-----|-----------|--------|-----|
|--|----|-----------|---------|---------|-----|-----------|--------|-----|

- (a) Sufficient statistics
- (b) Influence Function
- (c) Bayes risk
- (d) Divergence of Kalman Filter
- (e) Consistency
- (f) Array aperture and resolution
- (f) Bias
- (f) Invariance of ML estimator
- 2. Explain the principles of subspace based estimation of directions of arrival. Use MUSIC method to illustrate the principles. Discuss the the performance of the technique as well.
- **3.** Let us have N i.i.d. observations from the pdf:  $f_{\theta}(x) = e^{-(x-\theta)}$ , if  $\theta < x < \infty$  and  $f_{\theta}(x) = 0$  otherwise.

Find the Cramer-Rao lower bound for the variance of unbiased estimator of  $\theta$ .

4. Suppose that  $\Theta$  is a random parameter and given  $\Theta = \theta$ , the observation y have a density

$$f(y|\theta) = (\theta/2)e^{-\theta|y|}, y \in R$$

Suppose further that  $\Theta$  has prior density

$$f(\theta) = \begin{cases} 1/\theta, & 1 \le \theta \le e \\ 0 & \text{otherwise} \end{cases}$$

Find the MAP and Mean Square estimators of  $\Theta$  based on observation.

Recall the Bayes rule:

$$f(\theta|\mathbf{y}) = \frac{f(\mathbf{y}|\theta)f(\theta)}{f(\mathbf{y})}$$

**5** Let us have N independent and identically distributed (i.i.d.) observations  $x_1, ..., x_N$  having the pdf:

$$f_{\theta}(x) = \theta^2 x e^{-\theta x},$$

where  $\theta > 0$ . Find the Maximum Likelihood estimator of  $\theta$ . You want to study whether the obtained maximum likelihood estimator above is unbiased. Explain how you would do that.