CS-E4320 Cryptography and Data Security (5 cr)

EXAM

Wednesday, December 13, 2017

This is a 30 point exam.

- 1. (3 pts) Answer the following questions:
 - (a) (1 pt) Describe the One Time Pad (OTP) algorithm. What are the limitations of this cipher? Give one alternative cipher?
 - (b) (1 pt) Given a hash function with tags of length b bits. What is collision attack? What is the generic complexity of this attack?
 - (c) (1 pt) Describe the three Generals problem in the context of secret sharing.
- 2. (3 pts) Given a 4-stage LFSR with connection polynomial $c(x) = 1 + c_1x + c_2x^2 + c_3x^3 + c_4x^4$, $c_i \in \{0, 1\}$.
 - (a) (2 pts) Given the sequence 01100100 generated by this LFSR, what is the value of the coefficients c_i?
 - (b) (1 pt) Draw the corresponding LFSR.
- 3. (6 pts) We consider blocks of 128 bits and a hash function H which tags messages M of n blocks ($M = M_1 || M_2 \cdots || M_n$) as $H(M) = AES_0(M_1) \oplus AES_0(M_2) \oplus \cdots \oplus AES_0(M_n)$, where AES_0 denotes the AES block cipher encryption function with the key 0.
 - (a) (3 pts) Can we generate a preimage for messages $M=M_1$ of one block? Explain your solution.
 - (b) (3 pts) Given a message $M = M_1 || M_2$ and its hash value h = H(M), how many messages $M' = M_1' || M_2'$ of length two blocks have the same hash value?
- 4. (3.pts) Solve the equation $7x = 1 \pmod{131}$.
- 5. (3 pts) Use the CRT to solve the following system:

$$\begin{cases} x = 15 \mod 31 \\ x = 8 \mod 37. \end{cases}$$

- 6. (3 pts) We consider the Diffie-Hellman key exchange protocol over $\mathbb{F}_{2^5} = \mathbb{F}_2[x]/\langle x^5 + x^2 + 1 \rangle$. The primitive element chosen in the scheme is $\alpha = x^2$. The private keys are a = 3 and b = 12. What is the session key k_{AB} ?
- 7. (9 pts) We consider the RSA public key cipher. The public key of Bob_1 is $(e_1 = 5, N = 221)$. The public key of Bob_2 is $(e_2 = 13, N = 221)$. Alice want to send the message m to both Bob_1 and Bob_2 . We denote the corresponding ciphertexts c_1 and c_2 .
 - (a) (2 pts) Use the Extended Euclidian algorithm to find u and v such that $5 \cdot u + 13 \cdot v = 1$.
 - (b) (2 pts) Given $c_2 = 214$, compute $c_2^2 \mod 221$.
 - (c) (2 pts) Given $c_1 = 41$, check that $m = c_2^2 \cdot c_1^{-5}$. (HINT: $c_1^{-5} = 167$)
 - (d) (3 pts) Explain why Eve is able to recover the message m without knowing the private exponents d_1 and d_2 .

Exam Calculator Policy. It is allowed to use a function calculator, however no programmable calculator.