ELEC-E8101 Digital and Optimal Control Intermediate Exam (27.10.2017) - Solutions

1. a) Find the z-transform of the sequence $x[k]=e^{-a k h}, k=0,1,2,3, \ldots$, where h and a are constants, using the definition.
b) Given that

$$
\begin{equation*}
Y(z)=\frac{\left(1-e^{-a h}\right) z}{(z-1)\left(z-e^{-a h}\right)}, a, h \text { are constants, } \tag{2p}
\end{equation*}
$$

find the value of $y[k]$ as $k \rightarrow \infty$ using the Final Value Theorem.
c) Find $y[k]$ by doing the inverse z-transform of $Y(z)$ given above. Determine the value of $y[k]$ as $k \rightarrow \infty$ and check if your answer agrees with that of part b$)$.

Solution.

a) The z-transforms of the sequences based on the definition is

$$
\begin{aligned}
X(z) & =\sum_{-\infty}^{\infty} x[k] z^{-k} \\
& =\sum_{k=0}^{\infty} e^{-a k h} z^{-k} \\
& =\sum_{k=0}^{\infty}\left(e^{-a h} z^{-1}\right)^{k} \\
& =\lim _{k \rightarrow \infty} \frac{1-\left(e^{-a h} z^{-1}\right)^{k}}{1-e^{-a h} z^{-1}} \\
& =\frac{1}{1-e^{-a h} z^{-1}}, \quad\left|e^{-a h} z^{-1}\right|<1 \text { or }|z|>\left|e^{-a h}\right| \\
& =\frac{z}{z-e^{-a h}}
\end{aligned}
$$

b) Final Value Theorem: if $\lim _{k \rightarrow \infty} y[k]$ exists, then:

$$
\begin{aligned}
\lim _{k \rightarrow \infty} y[k] & =\lim _{z \rightarrow 1}\left(1-z^{-1}\right) Y(z) \\
& =\lim _{z \rightarrow 1}(z-1) \frac{\left(1-e^{-a h}\right) z}{(z-1)\left(z-e^{-a h}\right)} \\
& =\lim _{z \rightarrow 1}\left(\frac{1-e^{-a h}}{z-e^{-a h}}\right) \\
& =\frac{1-e^{-a h}}{1-e^{-a h}}=1
\end{aligned}
$$

c) If z-transform tables are studied, it is noted that in every transform z is in the numerator. Therefore, for convenience, we first divide the given equation by z,

$$
\frac{Y(z)}{z}=\frac{\left(1-e^{-a h}\right)}{(z-1)\left(z-e^{-a h}\right)}=\frac{A}{z-1}+\frac{B}{z-e^{-a h}}
$$

Let's solve for A and B with Heaviside's method. (The partial fraction method could as well be used)

$$
\begin{aligned}
& A=\lim _{z \rightarrow 1}(z-1) \frac{\left(1-e^{-a h}\right)}{(z-1)\left(z-e^{-a h}\right)}=1 \\
& B=\lim _{z \rightarrow e^{-a h}}\left(z-e^{-a h}\right) \frac{\left(1-e^{-a h}\right)}{(z-1)\left(z-e^{-a h}\right)}=-1 .
\end{aligned}
$$

Then

$$
\frac{Y(z)}{z}=\frac{1}{z-1}-\frac{1}{z-e^{-a h}} \Rightarrow Y(z)=\frac{z}{z-1}-\frac{z}{z-e^{-a h}}
$$

and this can be inverse-transformed with the transformation tables, giving

$$
y[k]=1-e^{-a k h} .
$$

Therefore,

$$
\lim _{k \rightarrow \infty} y[k]=\lim _{k \rightarrow \infty}\left(1-e^{-a k h}\right)=1 .
$$

The answer agrees with part b).
2. Consider the following difference equation:

$$
y[k+2]-1.3 y[k+1]+0.4 y[k]=u[k+1]-0.4 u[k] .
$$

a) Determine the pulse transfer function.
b) Is the system stable? Justify your answer.
c) Determine the step response.

Solution.

a) Taking the z-transform (assuming zero initial conditions):

$$
\begin{aligned}
& z^{2} Y(z)-1.3 z Y(z)+0.4 Y(z)=z U(z)-0.4 U(z) \\
& G(z)=\frac{Y(z)}{U(z)}=\frac{z-0.4}{z^{2}-1.3 z+0.4}
\end{aligned}
$$

b) We want to find the poles of the transfer function, i.e.,

$$
G(z)=\frac{Y(z)}{U(z)}=\frac{z-0.4}{z^{2}-1.3 z+0.4}=\frac{z-0.4}{(z-0.8)(z-0.5)} .
$$

The poles are: $p_{1}=0.8$ and $p_{2}=0.5$. The poles are within the unit circle and therefore, the system is stable.
c) From the difference equation:
$\underline{\text { Up to } k=-3:} \ldots=y[-3]=y[-2]=y[-1]=0$.
For $k=-2$:

$$
y[0]-1.3 \underbrace{y[-1]}_{=0}+0.4 \underbrace{y[-2]}_{=0}=\underbrace{u[-1]}_{=0}-0.4 \underbrace{u[-2]}_{=0} \Rightarrow y[0]=0
$$

For $k=-1$:

$$
y[1]-1.3 \underbrace{y[0]}_{=0}+0.4 \underbrace{y[-1]}_{=0}=\underbrace{u[0]}_{=1}-0.4 \underbrace{u[-1]}_{=0} \Rightarrow y[1]=1
$$

Taking the z-transform (without assuming zero initial conditions):

$$
\begin{aligned}
& (z^{2} Y(z)-z^{2} \underbrace{y[0]}_{=0}-z \underbrace{y[1]}_{=1})-1.3(z Y(z)-z \underbrace{y[0]}_{=0})+0.4 Y(z)=(z U(z)-z \underbrace{u[0]}_{=1})-0.4 U(z) \\
& z^{2} Y(z)-\not z-1.3 z Y(z)+0.4 Y(z)=z U(z)-\not z-0.4 U(z)
\end{aligned}
$$

Therefore, $Y(z)$ is given by

$$
\begin{aligned}
Y(z) & =\frac{z-0.4}{z^{2}-1.3 z+0.4} U(z)=\frac{z-0.4}{(z-0.8)(z-0.5)} U(z) \\
& =\frac{z-0.4}{(z-0.8)(z-0.5)} \frac{z}{z-1}=\frac{z(z-0.4)}{(z-0.8)(z-0.5)(z-1)}
\end{aligned}
$$

We do partial fractions:

$$
\left.\begin{array}{l}
\quad \frac{Y(z)}{z}=\frac{z-0.4}{(z-0.8)(z-0.5)(z-1)} \equiv \frac{A}{z-0.8}+\frac{B}{z-0.5}+\frac{C}{z-1} \\
A=\frac{0.4}{0.3(-0.2)}=-\frac{20}{3}=-6.67 \\
B=\frac{0.1}{(-0.3)(-0.5)}=\frac{2}{3}=0.67 \\
C=\frac{0.6}{(0.2)(0.5)}=6
\end{array}\right\} \Rightarrow Y(z)=-6.67 \frac{z}{z-0.8}+0.67 \frac{z}{z-0.5}+6 \frac{z}{z-1}
$$

Therefore,

$$
y[k]=-6.67(0.8)^{k}-0.67(0.5)^{k}+6 u[k] .
$$

3. The double integrator is a common process in mechanical models. Its differential equation form is

$$
\frac{d^{2} y(t)}{d t^{2}}=u(t)
$$

a) Show that the state-space representation is given by

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t) \\
y(t) & =\left[\begin{array}{ll}
1 & 0
\end{array}\right] \mathbf{x}(t)
\end{aligned}
$$

b) Sample the state-space model with sampling time h, assuming ZOH and determine the discrete state-space representation of the form:

$$
\begin{align*}
\mathbf{x}(k h+h) & =\Phi(h) \mathbf{x}(k h)+\Gamma(h) \mathbf{u}(k h) \tag{2p}\\
\mathbf{y}(k h) & =C \mathbf{x}(k h)+D \mathbf{u}(k h)
\end{align*}
$$

Hint:

$$
\begin{align*}
& \Phi(h)=e^{A h}=I+h A+\frac{1}{2} h^{2} A^{2}+\frac{1}{6} h^{3} A^{3}+\ldots=\sum_{n=0}^{\infty} \frac{1}{n!} h^{n} A^{n} \\
& \Gamma(h)=\int_{0}^{h} e^{A s} d s B \tag{2p}
\end{align*}
$$

c) Find the transfer function of the discrete-time representation.

Hint: The transfer function is given by $G(z)=C(z I-\Phi)^{-1} \Gamma+D$.

Solution.

a) Set $x_{1}=y, x_{2}=d y / d t$ and $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$. Then,

$$
\left.\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=\frac{d^{2} y}{d t^{2}}=u(t)
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
\dot{\mathbf{x}}(t)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t) \\
y(t)=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \mathbf{x}(t)
\end{array}\right.
$$

b) We need to find $\Phi(h)$ and $\Gamma(h)$:

$$
\begin{aligned}
\Phi(h) & =e^{A h}=I+h A+\frac{1}{2} h^{2} A^{2}+\frac{1}{6} h^{3} A^{3}+\ldots=\sum_{n=0}^{\infty} \frac{1}{n!} h^{n} A^{n} \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+h\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+\mathbf{0}=\left[\begin{array}{ll}
1 & h \\
0 & 1
\end{array}\right] \\
\Gamma(h) & =\int_{0}^{h} e^{A s} d s B=\int_{0}^{h}\left[\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right] d s\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\int_{0}^{h}\left[\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] d s \\
& =\int_{0}^{h}\left[\begin{array}{l}
s \\
1
\end{array}\right] d s=\left[\begin{array}{c}
h^{2} / 2 \\
h
\end{array}\right]
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathbf{x}(k h+h) & =\left[\begin{array}{ll}
1 & h \\
0 & 1
\end{array}\right] \mathbf{x}(k h)+\left[\begin{array}{c}
h^{2} / 2 \\
h
\end{array}\right] \mathbf{u}(k h) \\
\mathbf{y}(k h) & =\left[\begin{array}{ll}
1 & 0
\end{array}\right] \mathbf{x}(k h)
\end{aligned}
$$

c) The transfer function is given by

$$
\begin{aligned}
G(z) & =C(z I-\Phi)^{-1} \Gamma+D=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
z-1 & -h \\
0 & z-1
\end{array}\right]^{-1}\left[\begin{array}{c}
h^{2} / 2 \\
h
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0
\end{array}\right] \frac{1}{(z-1)^{2}}\left[\begin{array}{cc}
z-1 & h \\
0 & z-1
\end{array}\right]\left[\begin{array}{c}
h^{2} / 2 \\
h
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{1}{z-1} & \frac{h}{(z-1)^{2}}
\end{array}\right]\left[\begin{array}{c}
h^{2} / 2 \\
h
\end{array}\right]=\frac{h^{2} / 2}{z-1}+\frac{h^{2}}{(z-1)^{2}}=\frac{h^{2}(z+1)}{2(z-1)^{2}}
\end{aligned}
$$

4. Consider the feedback system

where

$$
P(z)=\frac{-1}{z^{2}+z+2}
$$

and K is a constant.
a) Draw the pole/zero diagram (z-plane) for the open-loop system $P(z)$. Is the system stable?
b) Show that the closed-loop transfer function from $R(z)$ to $Y(z)$ is given by

$$
G(z)=\frac{-K}{z^{2}+z+2-K}
$$

c) For which values of K is the closed-loop stable?
d) Consider the closed-loop system and let the input $r[k]$ be a unit step. Find, as a function of gain K, the steady-state value of $y[k]$ (i.e., the $\lim _{k \rightarrow \infty} y[k]$) when this is finite, stating for which values of K the answer is valid.
e) Let $K=1.5$. The figure below shows three Nyquist plots (A, B and C), but only one corresponds to $K P(z)$.

Choose the correct one, justifying your answer with respect to the Nyquist stability criterion.

Hint: The closed-loop system will be stable if and only if the number of counter-clockwise encirclements N of the point -1 by $K P\left(e^{j \omega}\right)$ as ω increases from 0 to 2π is such that $N=Z-P$, where Z is the number of roots of the characteristic equation, $1+K P(z)=0$, outside the unit circle, and, P the number of roots of the open-loop system, $K P(z)=0$, outside the unit circle.

Solution.

a) The open-loop poles of the system are the roots of the equation $z^{2}+z+2=0$, i.e.,

$$
p_{1,2}=\frac{-1 \pm \sqrt{1^{2}-4(1)(2)}}{2(1)}=\frac{-1 \pm j \sqrt{7}}{2}
$$

The poles are outside the unit circle (see figure below), since $\left|p_{1,2}\right|>1$, and therefore the system is unstable.

b) The closed-loop transfer function from $R(z)$ to $Y(z)$ is given by

$$
G(z)=\frac{Y(z)}{R(z)}=\frac{K P(z)}{1+K P(z)}=\frac{-K}{z^{2}+z+2-K} .
$$

c) 1st way: The closed-loop poles are the roots of the equation $z^{2}+z+2-K=0$, which are given by

$$
p_{1,2}=\frac{-1 \pm \sqrt{1^{2}-4(1)(2-K)}}{2(1)}=\frac{-1 \pm \sqrt{4 K-7}}{2} .
$$

For closed-loop stability we need the poles to be inside the unit disk.
For $4 K-7<0$:

$$
\left(\frac{-1}{2}\right)^{2}+\left(\frac{\sqrt{4 K-7}}{2}\right)^{2}<1 \Rightarrow|4 K-7|<3
$$

1) Since we assume already that $4 K-7<0$, it holds that $4 K-7<3$. Hence, $K<7 / 4$.
2) $-3<4 K-7 \Rightarrow K>1$.

Therefore, for $4 K-7<0,1<K<7 / 4$.
For $4 K-7>0$:

$$
-1<\frac{-1 \pm \sqrt{4 K-7}}{2}<1
$$

which gives $7 / 4<K<2$.
So, combining both cases, $1<K<2$.

2nd way: Let's use the Jury's stability test:

$\boxed{1}$	1	$2-K$
$2-K$	1	1
$1-(2-K)^{2}$	$K-1$	$b_{2}=\frac{2-K}{1}=2-K$
$\frac{1-(2-K)^{2}}{1-(2-K)^{2}-\frac{(K-1)^{2}}{1-(2-K)^{2}}}$	$b_{1}=\frac{K-1}{1-(2-K)^{2}}$	

The last term can be written as:

$$
\begin{aligned}
1-(2-K)^{2}-\frac{(K-1)^{2}}{1-(2-K)^{2}} & =(K-1)(3-K)-\frac{(K-1)^{2}}{(K-1)(3-K)} \quad \text { (difference of two squares) } \\
& =\frac{(K-1)^{2}(3-K)^{2}-(K-1)^{2}}{(K-1)(3-K)} \\
& =\frac{(K-1)^{2}\left[(3-K)^{2}-1\right]}{1-(2-K)^{2}}
\end{aligned}
$$

Stability conditions require that the boxed expressions are all greater than 0. First, $1>0$ holds. For the second to hold we need:

$$
\begin{aligned}
1-(2-K)^{2}>0 \Rightarrow & {[1-(2-K)][1+(2-K)]>0 } \\
& (K-1)(3-K)>0 \Rightarrow 1<K<3
\end{aligned}
$$

For the third case, since the denominator is positive already (given that $1<K<3$ we want to make sure that $(3-K)^{2}-1>0$, which corresponds to: $K<2$ or $K>4$. Combining the two cases, we have that $1<K<2$.
3rd way: Using the triangle rule:

$$
\left\{\begin{array}{l}
-1<2-K<1 \Rightarrow 1<K<3 \\
0<2-K \Rightarrow K<2 \\
-2<2-K \Rightarrow K<4
\end{array}\right.
$$

The solution is the intersection of the 3 sets given using the triangle rule, i.e., $1<K<2$.
d) When $K \notin(1,2)$, the system is unstable and therefore $y[k]$ will grow unbounded. When $k \in(1,2)$, the closed-loop system is stable and to find the steady-state value of $y[k]$, denoted here by $y_{s s}$, we use the Final Value Theorem to the closed-loop transfer function $G(z)$ we found in part b):

$$
\begin{aligned}
y_{s s} & =\lim _{k \rightarrow \infty} y[k]=\lim _{z \rightarrow 1}(z-1) Y(z)=\lim _{z \rightarrow 1}(z-1) G(z) U(z) \\
& =\lim _{z \rightarrow 1}(z-1) \frac{-K}{z^{2}+z+2-K} \frac{z}{z-1}=\frac{-K}{4-K}
\end{aligned}
$$

e) 1st way: For $K=1.5$, the closed-loop system is stable. Since the open-loop system has 2 unstable poles, the Nyquist diagram must have 2 counterclockwise encirclements of the point $-1+j 0$. Thus, plot B is the correct.
2nd way: Nyquist plot A shows that, for $z=1$ or $z=-1, K P(z)=-1.5$. However, $K P(1)=-3 / 8$ and $K P(-1)=-3 / 4$, thus plot A cannot be the one. Nyquist plot C shows that the magnitude of $K P(z)$ is approximately always less than 0.75 . However, $\left|K P\left(e^{j 1.93}\right)\right|=1.6$. Also, there exists only one encirclement, and the system could never be stable. Therefore, plot C cannot be the one either. Plot B satisfies all of the above and it is the correct one.

