
ELEC-E8101 Digital and Optimal Control

Intermediate Exam (27.10.2017) - Solutions

1. a) Find the z-transform of the sequence x[k] = e−akh, k = 0, 1, 2, 3, . . ., where h and a are
constants, using the definition. [1p]

b) Given that

Y (z) =
(1− e−ah)z

(z − 1)(z − e−ah)
, a, h are constants,

find the value of y[k] as k →∞ using the Final Value Theorem. [2p]

c) Find y[k] by doing the inverse z-transform of Y (z) given above. Determine the value of
y[k] as k →∞ and check if your answer agrees with that of part b). [3p]

Solution.

a) The z-transforms of the sequences based on the definition is

X(z) =

∞∑
−∞

x[k]z−k

=
∞∑
k=0

e−akhz−k

=
∞∑
k=0

(
e−ahz−1

)k
= lim

k→∞

1−
(
e−ahz−1

)k
1− e−ahz−1

=
1

1− e−ahz−1 , |e−ahz−1| < 1 or |z| > |e−ah|

=
z

z − e−ah

b) Final Value Theorem: if lim
k→∞

y[k] exists, then:

lim
k→∞

y[k] = lim
z→1

(1− z−1)Y (z)

= lim
z→1

(z − 1)
(1− e−ah)z

(z − 1)(z − e−ah)

= lim
z→1

(
1− e−ah
z − e−ah

)
=

1− e−ah
1− e−ah = 1



c) If z-transform tables are studied, it is noted that in every transform z is in the numerator.
Therefore, for convenience, we first divide the given equation by z,

Y (z)

z
=

(
1− e−ah

)
(z − 1) (z − e−ah)

=
A

z − 1
+

B

z − e−ah

Let’s solve for A and B with Heaviside’s method. (The partial fraction method could as
well be used)

A = lim
z→1

(z − 1)

(
1− e−ah

)
(z − 1) (z − e−ah)

= 1

B = lim
z→e−ah

(
z − e−ah

) (
1− e−ah

)
(z − 1) (z − e−ah)

= −1.

Then
Y (z)

z
=

1

z − 1
− 1

z − e−ah ⇒ Y (z) =
z

z − 1
− z

z − e−ah
and this can be inverse-transformed with the transformation tables, giving

y[k] = 1− e−akh.

Therefore,

lim
k→∞

y[k] = lim
k→∞

(
1− e−akh

)
= 1.

The answer agrees with part b).



2. Consider the following difference equation:

y[k + 2]− 1.3y[k + 1] + 0.4y[k] = u[k + 1]− 0.4u[k].

a) Determine the pulse transfer function. [2p]

b) Is the system stable? Justify your answer. [2p]

c) Determine the step response. [2p]

Solution.

a) Taking the z-transform (assuming zero initial conditions):

z2Y (z)− 1.3zY (z) + 0.4Y (z) = zU(z)− 0.4U(z)

G(z) =
Y (z)

U(z)
=

z − 0.4

z2 − 1.3z + 0.4

b) We want to find the poles of the transfer function, i.e.,

G(z) =
Y (z)

U(z)
=

z − 0.4

z2 − 1.3z + 0.4
=

z − 0.4

(z − 0.8)(z − 0.5)
.

The poles are: p1 = 0.8 and p2 = 0.5. The poles are within the unit circle and therefore,
the system is stable.

c) From the difference equation:

Up to k = −3: . . . = y[−3] = y[−2] = y[−1] = 0.

For k = −2:

y[0]− 1.3 y[−1]︸ ︷︷ ︸
=0

+0.4 y[−2]︸ ︷︷ ︸
=0

= u[−1]︸ ︷︷ ︸
=0

−0.4u[−2]︸ ︷︷ ︸
=0

⇒ y[0] = 0

For k = −1:

y[1]− 1.3 y[0]︸︷︷︸
=0

+0.4 y[−1]︸ ︷︷ ︸
=0

= u[0]︸︷︷︸
=1

−0.4u[−1]︸ ︷︷ ︸
=0

⇒ y[1] = 1

Taking the z-transform (without assuming zero initial conditions):(
z2Y (z)− z2 y[0]︸︷︷︸

=0

−z y[1]︸︷︷︸
=1

)
− 1.3

(
zY (z)− z y[0]︸︷︷︸

=0

)
+ 0.4Y (z) =

(
zU(z)− z u[0]︸︷︷︸

=1

)
− 0.4U(z)

z2Y (z)− �z − 1.3zY (z) + 0.4Y (z) = zU(z)− �z − 0.4U(z)

Therefore, Y (z) is given by

Y (z) =
z − 0.4

z2 − 1.3z + 0.4
U(z) =

z − 0.4

(z − 0.8)(z − 0.5)
U(z)

=
z − 0.4

(z − 0.8)(z − 0.5)

z

z − 1
=

z(z − 0.4)

(z − 0.8)(z − 0.5)(z − 1)



We do partial fractions:

Y (z)

z
=

z − 0.4

(z − 0.8)(z − 0.5)(z − 1)
≡ A

z − 0.8
+

B

z − 0.5
+

C

z − 1

A =
0.4

0.3(−0.2)
= −20

3
= −6.67

B =
0.1

(−0.3)(−0.5)
=

2

3
= 0.67

C =
0.6

(0.2)(0.5)
= 6


⇒ Y (z) = −6.67

z

z − 0.8
+ 0.67

z

z − 0.5
+ 6

z

z − 1

Therefore,

y[k] = −6.67(0.8)k − 0.67(0.5)k + 6u[k].



3. The double integrator is a common process in mechanical models. Its differential equation
form is

d2y(t)

dt2
= u(t).

a) Show that the state-space representation is given by [2p]

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t)

y(t) =
[
1 0

]
x(t)

b) Sample the state-space model with sampling time h, assuming ZOH and determine the
discrete state-space representation of the form: [2p]

x(kh+ h) = Φ(h)x(kh) + Γ(h)u(kh)

y(kh) = Cx(kh) +Du(kh)

Hint:

Φ(h) = eAh = I + hA+
1

2
h2A2 +

1

6
h3A3 + . . . =

∞∑
n=0

1

n!
hnAn

Γ(h) =

∫ h

0
eAsdsB

c) Find the transfer function of the discrete-time representation. [2p]

Hint: The transfer function is given by G(z) = C(zI − Φ)−1Γ +D.

Solution.

a) Set x1 = y, x2 = dy/dt and x =

[
x1
x2

]
. Then,

ẋ1 = x2

ẋ2 =
d2y

dt2
= u(t)

⇒

ẋ(t) =

[
0 1

0 0

]
x(t) +

[
0

1

]
u(t)

y(t) =
[
1 0

]
x(t)

b) We need to find Φ(h) and Γ(h):

Φ(h) = eAh = I + hA+
1

2
h2A2 +

1

6
h3A3 + . . . =

∞∑
n=0

1

n!
hnAn

=

[
1 0
0 1

]
+ h

[
0 1
0 0

]
+ 0 =

[
1 h
0 1

]
Γ(h) =

∫ h

0
eAsdsB =

∫ h

0

[
1 s
0 1

]
ds

[
0
1

]
=

∫ h

0

[
1 s
0 1

] [
0
1

]
ds

=

∫ h

0

[
s
1

]
ds =

[
h2/2
h

]



Therefore,

x(kh+ h) =

[
1 h
0 1

]
x(kh) +

[
h2/2
h

]
u(kh)

y(kh) =
[
1 0

]
x(kh)

c) The transfer function is given by

G(z) = C(zI − Φ)−1Γ +D =
[
1 0

] [z − 1 −h
0 z − 1

]−1 [
h2/2
h

]

=
[
1 0

] 1

(z − 1)2

[
z − 1 h

0 z − 1

] [
h2/2
h

]

=
[

1
z−1

h
(z−1)2

] [h2/2
h

]
=
h2/2

z − 1
+

h2

(z − 1)2
=
h2(z + 1)

2(z − 1)2



4. Consider the feedback system

R(z) Y (z)
K P (z)Σ

+

−

E(z) U(z)

where

P (z) =
−1

z2 + z + 2

and K is a constant.

a) Draw the pole/zero diagram (z-plane) for the open-loop system P (z). Is the system
stable? [2p]

b) Show that the closed-loop transfer function from R(z) to Y (z) is given by [1p]

G(z) =
−K

z2 + z + 2−K

c) For which values of K is the closed-loop stable? [3p]

d) Consider the closed-loop system and let the input r[k] be a unit step. Find, as a function
of gain K, the steady-state value of y[k] (i.e., the limk→∞ y[k]) when this is finite, stating
for which values of K the answer is valid. [3p]

e) Let K = 1.5. The figure below shows three Nyquist plots (A, B and C), but only one
corresponds to KP (z).

A B C

Choose the correct one, justifying your answer with respect to the Nyquist stability
criterion. [3p]

Hint: The closed-loop system will be stable if and only if the number of counter-clockwise
encirclements N of the point −1 by KP (ejω) as ω increases from 0 to 2π is such that
N = Z−P , where Z is the number of roots of the characteristic equation, 1+KP (z) = 0,
outside the unit circle, and, P the number of roots of the open-loop system, KP (z) = 0,
outside the unit circle.



Solution.

a) The open-loop poles of the system are the roots of the equation z2 + z + 2 = 0, i.e.,

p1,2 =
−1±

√
12 − 4(1)(2)

2(1)
=
−1± j

√
7

2

The poles are outside the unit circle (see figure below), since |p1,2| > 1, and therefore
the system is unstable.

b) The closed-loop transfer function from R(z) to Y (z) is given by

G(z) =
Y (z)

R(z)
=

KP (z)

1 +KP (z)
=

−K
z2 + z + 2−K .

c) 1st way: The closed-loop poles are the roots of the equation z2 + z+ 2−K = 0, which
are given by

p1,2 =
−1±

√
12 − 4(1)(2−K)

2(1)
=
−1±

√
4K − 7

2
.

For closed-loop stability we need the poles to be inside the unit disk.

For 4K − 7 < 0: (−1

2

)2

+

(√
4K − 7

2

)2

< 1⇒ |4K − 7| < 3

1) Since we assume already that 4K−7 < 0, it holds that 4K−7 < 3. Hence, K < 7/4.

2) −3 < 4K − 7⇒ K > 1.

Therefore, for 4K − 7 < 0, 1 < K < 7/4.

For 4K − 7 > 0:

−1 <
−1±

√
4K − 7

2
< 1

which gives 7/4 < K < 2.

So, combining both cases, 1 < K < 2.



2nd way: Let’s use the Jury’s stability test :

1 1 2−K

2−K 1 1 b2 =
2−K

1
= 2−K

1− (2−K)2 K − 1

K − 1 1− (2−K)2 b1 =
K − 1

1− (2−K)2

1− (2−K)2 − (K − 1)2

1− (2−K)2

The last term can be written as:

1− (2−K)2 − (K − 1)2

1− (2−K)2
= (K − 1)(3−K)− (K − 1)2

(K − 1)(3−K)
(difference of two squares)

=
(K − 1)2(3−K)2 − (K − 1)2

(K − 1)(3−K)

=
(K − 1)2

[
(3−K)2 − 1

]
1− (2−K)2

Stability conditions require that the boxed expressions are all greater than 0. First,
1 > 0 holds. For the second to hold we need:

1− (2−K)2 > 0⇒[1− (2−K)][1 + (2−K)] > 0

(K − 1)(3−K) > 0⇒ 1 < K < 3

For the third case, since the denominator is positive already (given that 1 < K < 3
we want to make sure that (3 −K)2 − 1 > 0, which corresponds to: K < 2 or K > 4.

Combining the two cases, we have that 1 < K < 2 .

3rd way: Using the triangle rule:
−1 < 2−K < 1⇒ 1 < K < 3

0 < 2−K ⇒ K < 2

−2 < 2−K ⇒ K < 4

The solution is the intersection of the 3 sets given using the triangle rule, i.e., 1 < K < 2 .

d) When K /∈ (1, 2), the system is unstable and therefore y[k] will grow unbounded. When
k ∈ (1, 2), the closed-loop system is stable and to find the steady-state value of y[k],
denoted here by yss, we use the Final Value Theorem to the closed-loop transfer function
G(z) we found in part b):

yss = lim
k→∞

y[k] = lim
z→1

(z − 1)Y (z) = lim
z→1

(z − 1)G(z)U(z)

= lim
z→1

(z − 1)
−K

z2 + z + 2−K
z

z − 1
=
−K

4−K



e) 1st way: For K = 1.5, the closed-loop system is stable. Since the open-loop system
has 2 unstable poles, the Nyquist diagram must have 2 counterclockwise encirclements
of the point −1 + j0. Thus, plot B is the correct.
2nd way: Nyquist plot A shows that, for z = 1 or z = −1, KP (z) = −1.5. However,
KP (1) = −3/8 and KP (−1) = −3/4, thus plot A cannot be the one. Nyquist plot C
shows that the magnitude of KP (z) is approximately always less than 0.75. However,
|KP (ej1.93)| = 1.6. Also, there exists only one encirclement, and the system could never
be stable. Therefore, plot C cannot be the one either. Plot B satisfies all of the above
and it is the correct one.


