
MEC-E1040 Dynamics of Structures Exam

Laic St-Pierre Dec 14, 2017, 1-5pm

A: Problem I (15pts)

Consider the pendulum illustrated below, which is pivoted at point O. Assume that rotations are small and that the mass of the rod is negligible,

- 1. Find the equation of motion for the system. Recall that the moment of inertia of the pendulum is mL^2 .
- 2. Based on the equation of motion, find the natural angular frequency ω_n and the damping ratio ζ of the system.

A? Problem 2 (25pts)

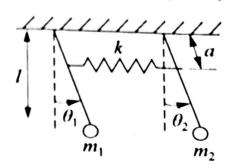
An atomic force microscope has a mass $m=100\,\mathrm{kg}$ and its protective easing is made of a viscoelastic material with a damping coefficient $c=50\,\mathrm{kg/s}$. Researchers have found that the metro is making the floor vibrate with an amplitude $Y=3\,\mathrm{cm}$ and an angular frequency $\omega_b=3\,\mathrm{rad/s}$,

- 1. Calculate the vibration amplitude considering that the mounting system has a stiffness k = 1 kN/m.
- 2. Design a new mounting system (find a new value of k) that would ensure that the vibration amplitude of the microscope do not exceed 2.25 cm.

A? Problem 3 (10pts)

A rotating machine has a small imbalance. It has been observed that at resonance (r=1), the vibration amplitude is 10 mm. As the rotating speed is increased several decades past resonance, the amplitude of displacement remains fixed at 1 mm. Estimate the damping ratio ζ of the system.

MEC-F 1040 Dynamics of Structures


Luc St-Pierre Dec 14, 2017, 1-5pm

Isam

A7 Problem 4 (25pts)

Convides the system below with two pendulums of length l connected by a spring. Assume that tenstions are small and that the rods have a negligible mass.

- 1. Use Lagrange equation to derive the equations of motion. Express your result in a matrix form.
- 2. Compute the natural angular frequencies of the system and the mode shapes, provided that $k=20\,\mathrm{N/m}, l=0.5\,\mathrm{m}, a=0.1\,\mathrm{m}$ and $m_1=m_2=10\,\mathrm{kg}$.

g 7,1 6

A? Problem 5 (25pts)

Wa: 3000

A machine is designed with a steady-state operating speed between 2000 and 4000 rpm. Unfortunately, due to an imbalance in the machine, a large violent vibration occurs at 3000 rpm. An initial absorber is installed with a mass $m_a = 2$ kg tuned to 3000 rpm. This, however, causes the natural frequencies of the system to occur at 2400 and 3750 rpm.

- 1. Find the mass m and stiffness k of the machine. Assume that the system is undamped.
- 2. Redesign the absorber (find new values for m_a and k_a) so that the natural frequencies of the system are 2000 and 4000 rpm, rendering the system safe for operation. Again, assume that the system is undamped.