Examination 23.5.2018 Samuli Aalto

1. Consider an M/G/1-FIFO queue with arrival rate λ and IID service times that consist of a random number of IID phases,

$$S = \sum_{i=1}^{N} Y_i,$$

where phase Y_i obeys the exponential distribution with mean $E[Y_i] = 1$ and N is an independent random variable having a uniform distribution, $P\{N=1\} = P\{N=2\} = 1/2$.

- (a) For which values of λ the system is stable?
- (b) Give also the mean number of customers in the system when $\lambda = 1/2$.
- 2. Consider flow-level data traffic in a bottleneck link of an IP network. The traffic consists of elastic flows (such as file transfers using TCP), which arrive according to a Poisson process with rate $\lambda = 3$ flows/s. The flow sizes B_i are IID random variables with mean E[B] = 30 Mb, and the link capacity is C Mbps. Use the M/G/1-PS model to determine
 - (a) the stability condition for the link capacity C;
 - (b) the mean file transfer time for a randomly chosen flow when C = 100 Mbps.
- 3. Consider a Jackson network with M=2 nodes. For each node i=1,2, new customers arrive at rate $\lambda/2$. The service times in both nodes are independent and exponentially distributed with mean $1/\mu$. Upon departure from node 1, the customer joins the queue of node 2 with probability 1/3 and leaves the whole network with probability 2/3. On the other hand, upon departure from node 2, the customer joins the queue of node 1 with probability 2/3 and leaves the whole network with probability 1/3. Assume further that $\lambda=2/3$ and $\mu=1$.
 - (a) What is the average time that a customer spends in the system?
 - (b) What is the average time that a customer who enters the network at node 1 spends in the system?
- 4. Consider a two-link network with capacities $C_1 = 200$ Mbps and $C_2 = 300$ Mbps. Route k = 1 uses both links, while route k = 2 uses only link 2. Let n_k denote the number of class-k flows. Determine the proportional fair (PF) inter-class allocations $\phi_k(n_1, n_2)$ for both classes k when $n_1 = 3$ and $n_2 = 2$.
- 5. Consider the following service system. New customers arrive according to a Poisson process with intensity λ . Customers are served one-by-one according to the FIFO service discipline. The service times are IID random variables obeying the exponential distribution with mean $1/\mu$. After each service the server needs a recovery interval, during which it is not able to serve any customers. The recovery intervals are IID random variables obeying the exponential distribution with mean $1/\delta$. The service of the customers continues as soon as the recovery interval is over. If there are no customers when a recovery interval ends, the server remains idle and ready to start service as soon as a new customer arrives. Let X(t) denote the number of customers in the system at time t. In addition, let Z(t) denote the state of the server at time t with $Z(t) \in \{0,1,2\}$ indicating that the server is idle (0), busy (1), or recovering (2). Draw the state transition diagram of the two-dimensional Markov process (X(t), Z(t)).