Exam

- Q1. (0.5p.) The Hamiltonian of a free spinless particle is $\hat{H} = -\frac{\hbar^2}{2m}\hat{\nabla}^2$. How is it modified in the presence of a time-independent magnetic field?
- Q2. (0.5p.) The Hermitian operator \hat{A} fulfills $\langle \phi | \hat{A} \psi \rangle = \langle \hat{A} \phi | \psi \rangle$ for any two wave functions $|\phi\rangle$ and $|\psi\rangle$. Can the eigenvalues of \hat{A} be complex numbers? Demonstrate your answer.
- Q3. (1p.) Let \hat{H} be a Hermitian operator, with eigenvalues $\{E_n\}_{n=0}^{\infty}$, and eigenstates $\{|\psi_n\rangle\}_{n=0}^{\infty}$, so that $\hat{H}|\psi_n\rangle = E_n|\psi_n\rangle$. Show that the average of \hat{H} on the state $|\phi\rangle$ can be written as $\langle\hat{H}\rangle_{\phi} = \sum_m P_m E_m$. What is the meaning of P_m ?
- Q4. (1p.) In class we saw that unitarity and tensor product structure imply the no-cloning theorem. Here you will show that linearity and tensor product structures also imply the no-cloning theorem. Suppose a cloning unitary U exists for all inputs $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, with $|\alpha|^2 + |\beta|^2 = 1$. Alice claims that

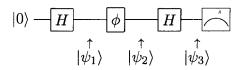
$$U |\psi\rangle \otimes |\mathrm{blank}\rangle = \alpha |0\rangle \otimes |0\rangle + \beta |1\rangle \otimes |1\rangle$$
.

However, Bob claims that:

$$U |\psi\rangle \otimes |\text{blank}\rangle = \alpha^2 |0\rangle \otimes |0\rangle + \alpha\beta |0\rangle \otimes |1\rangle + \alpha\beta |1\rangle \otimes |0\rangle + \beta^2 |1\rangle \otimes |1\rangle.$$

This contradiction can be used to show the no-cloning theorem.

- (a) Elaborate in detail the steps that Alice and Bob each have in mind to reach these two equations.
- (b) Under what condition on α and β are the two equations equivalent? What does this mean with respect to cloning?
- Q5. (1.5p.) A density matrix (also sometimes known as a density operator) is a representation of statistical mixtures of quantum states. This exercise introduces some examples of density matrices, and explores some of their properties.
 - (a) Let $|\psi\rangle = \frac{1}{\sqrt{2}}\left(|0\rangle + |1\rangle\right)$ be a qubit state. Obtain the matrix $\rho = |\psi\rangle \langle \psi|$, which you may compute using linear algebra using the vector representations of $|\psi\rangle$ and $\langle \psi|$. What are the eigenvectors and eigenvalues of ρ in the $\{|0\rangle, |1\rangle\}$ basis?
 - (b) Let $\rho_0 = |0\rangle \langle 0|$ and $\rho_1 = |1\rangle \langle 1|$. Find the matrix $\sigma = \frac{\rho_0 + \rho_1}{2}$. What are the eigenvalues and eigenvectors of σ ?
 - (c) Compute Tr (ρ^2) and Tr (σ^2) . Interpret the results.
- Q6. (1.5p.) Consider the single qubit model of an interferometer, where the goal is to estimate an unknown phase ϕ (see figure). The ϕ operator maps $|0\rangle \rightarrow |0\rangle$ and $|1\rangle \rightarrow e^{i\phi}|1\rangle$.
 - (a) Give the states $|\psi_1\rangle$, $|\psi_2\rangle$ and $|\psi_3\rangle$.



(b) What is the probability of measuring the final qubit in state $|0\rangle$? And the probability to measure it in state $|1\rangle$? Plot and comment the results.

Hint: The Hadamard gate has the matrix representation $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.

Q7. (2p.) A spinless particle is confined in a one-dimensional infinite potential well of length a,

$$V(x) = \left\{ egin{array}{ll} 0 & , 0 \leq x \leq a \\ \infty & , {
m otherwise} \end{array}
ight. .$$

The eigenenergies and eigenstates are

$$E_n = \frac{\pi^2 \hbar^2}{2ma^2} n^2 \quad , \quad \psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right),$$

with n an integer.

(a) Assuming $\lambda \ll 1$, compute the first-order energy shift to the levels with n=1,2,3, given by the perturbation

$$V'(x) = \left\{ egin{array}{ll} rac{\lambda x}{a} & , 0 \leq x \leq a \\ 0 & , ext{otherwise} \end{array}
ight. .$$

Hint:

$$\int \mathrm{d}x \sin^2(\alpha x) x = \frac{x^2}{4} - \frac{\cos(2\alpha x)}{8\alpha^2} - x \frac{\sin(2\alpha x)}{4\alpha}$$

- (b) Consider now that there are two *identical fermions* in the potential well (without perturbation). What is the energy and wave function of the ground state (ignoring the spin degree of freedom)?
- Q8. (2p.) The Hamiltonian of two interacting spin-1/2 particles is given by $\hat{H} = \gamma \hat{S}_{(1)} \cdot \hat{S}_{(2)}$, where $\hat{S}_{(1)}$ and $\hat{S}_{(2)}$ are the spin operators for particles 1 and 2, respectively.
 - (a) Write the matrix representation of \hat{H} in the basis of two spins, i.e., $\{|\uparrow\uparrow\rangle, |\uparrow\downarrow\rangle, |\downarrow\downarrow\rangle\}$.
 - (b) Find the eigenvalues and eigenvectors of \hat{H} .

Hint: You can use the following properties of the angular momentum operators:

$$\begin{split} J_i^2|j_1,m_1;j_2,m_2\rangle &= \hbar^2 j_i(j_i+1)|j_1,m_1;j_2,m_2\rangle\,,\\ J_{i,z}|j_1,m_1;j_2,m_2\rangle &= \hbar m_i|j_1,m_1;j_2,m_2\rangle\,,\\ J^2|j_1,j_2;jm\rangle &= \hbar^2 j(j+1)|j_1,j_2;jm\rangle\,,\\ J_z|j_1,j_2;jm\rangle &= \hbar m|j_1,j_2;jm\rangle\,, \end{split}$$

with i=1,2. Additionally, for the ladder operators $J_{\pm}=J_x\pm iJ_y$, we have

$$J_{\pm}|j,m\rangle=\hbar\sqrt{j(j+1)-m(m\pm1)}|j,m\pm1\rangle$$
 .