Surface Physics - Exam You are allowed a calculator and an A4 sheet (both sides) of notes (text, formula, diagrams) with you to the exam. All problems are worth six points. Points for each sub-question are given in the margin. Where numerical answers are required, remember to give them with the appropriate units. Read the problems carefully before answering. ### Problem I Consider a crystal with FCC structure with cubic lattice constant d. a) Draw sketches of the lattice and surfaces with (100)-, (210)-, and (111)-terminations. b) Which of the three surfaces is expected to have the highest surface energy and why? c) Sketch the LEED pattern of the three surfaces (indicate only first order spots) 2 pt ### Problem II a) Explain the concepts chemisorption and physisorption. Which interactions cause them? b) In a few sentences, explain the operating principles of the following techniques, what is the main information one can obtain with them and why they are surface sensitive: ARPES and AFM 4 pts # Problem III The figure below shows a schematic of nitric oxide (NO, dark spheres) adsorption structure on Ni(111) surface (surface atoms indicated in blue). - a) Give the Wood's and matrix notations of the adsorption structure. b) What are the main adsorption sites on a (111)-terminated fcc surface? What is the adsorption site of NO in the above image? 2 pts - c) Which factors influence the molecular adsorption geometry on the surface? ## Problem IV Below is a photoelectron spectrum measured with Al K α radiation at 1486.6 eV a) Concentrate on the transitions marked with red arrows. Identify the transitions based on the table of binding energies (last page). 4 pts b) Which of the following is most likely the sample structure (justify your choice): monolayer of cobalt sulphide on silver substrate, 10 nm film of copper oxide on a gold substrate, one monolayer of cobalt porphyrin (molecule with a structure formula of $C_{20}H_{14}CoN_4$) on Au substrate, cobalt nitride (Co_2N) monolayer on gold substrate, 2 nm film of cobalt oxide on copper substrate? 2 pts ## Problem V The figure below shows the structure of oligothiophene, an STM image with several oligothiophene molecules with different lengths and $\mathrm{d}I/\mathrm{d}V$ spectra measured on the four highlighted molecules. - a) Explain what is measured in the $\mathrm{d}I/\mathrm{d}V$ tunneling spectrum and what information can be obtained on a molecular system. - 3 pts - b) Why does the first feature on the $\mathrm{d}I/\mathrm{d}V$ spectra shift from molecule to another? - 1 pts - c) Given the molecular lengths (38 Å, 21 Å, 15 Å, 10 Å), estimate the effective mass of electrons in oligothiophene. - 2 pts | nergies in e' | energies in e' | ner | ner | ner | ner | • | | |---------------|----------------|-------|---------|----------|----------|-----|---| | nergies in | ner | ner | ner | ner | ner | • | Ü | | nergies | ner | ner | ner | ner | ner | | ⊑ | | nergi | ner | ner | ner | ner | ner | | S | | ner | ner | ner | ner | ner | ner | • | ᇑ | | ĕ | ene | ng en | ing ene | ding ene | nding en | 100 | = | | | a | lg e | ing e | ding e | nding e | | Ĕ | | 4p _{3/2}
58.3
546.3 | | |---|----------------------------| | 4P _{1/2}
63.7
642.7 | | | 4s
97
762.1 | | | 3d _{5/2}
368.3
2206 | | | 3d _{3/2}
374
2291 | | | 3p _{3/2}
59.9
75.1
573
2743 | 5p _{3/2}
57.2 | | 3p _{1/2}
58.9
77.3
603.8
3148 | 5p _{1/2}
74.2 | | 35
101
122.5
719
3425 | 5s
107.2 | | 2p _{3/2}
162.5
778.1
932.7
3351
11919 | 4f _{7/2}
84 | | 2p _{1/2}
163.6
793.2
952.3
3524
13734 | 4f _{5/2}
87.6 | | 2s
37.3
41.6
230.9
925.1
1096.7
3806
14353 | 4d _{5/2}
335.1 | | 18
284.2
409.9
543.1
2472
7709
8979
25514
80725 | 4d _{3/2}
353.2 | | Element
C
N
O
C
Cu
Cu | Αn |