Surface Physics - Exam

You are allowed a calculator and an A4 sheet (both sides) of notes (text, formula, diagrams) with you to the exam.

All problems are worth six points. Points for each sub-question are given in the margin. Where numerical answers are required, remember to give them with the appropriate units. Read the problems carefully before answering.

Problem I

Consider a crystal with FCC structure with cubic lattice constant d.

a) Draw sketches of the lattice and surfaces with (100)-, (210)-, and (111)-terminations.
b) Which of the three surfaces is expected to have the highest surface energy and why?
c) Sketch the LEED pattern of the three surfaces (indicate only first order spots)
2 pt

Problem II

a) Explain the concepts chemisorption and physisorption. Which interactions cause them?
b) In a few sentences, explain the operating principles of the following techniques, what is the main information one can obtain with them and why they are surface sensitive: ARPES and AFM
4 pts

Problem III

The figure below shows a schematic of nitric oxide (NO, dark spheres) adsorption structure on Ni(111) surface (surface atoms indicated in blue).

- a) Give the Wood's and matrix notations of the adsorption structure.
 b) What are the main adsorption sites on a (111)-terminated fcc surface?
 What is the adsorption site of NO in the above image?
 2 pts
- c) Which factors influence the molecular adsorption geometry on the surface?

Problem IV

Below is a photoelectron spectrum measured with Al K α radiation at 1486.6 eV

a) Concentrate on the transitions marked with red arrows. Identify the transitions based on the table of binding energies (last page).

4 pts

b) Which of the following is most likely the sample structure (justify your choice): monolayer of cobalt sulphide on silver substrate, 10 nm film of copper oxide on a gold substrate, one monolayer of cobalt porphyrin (molecule with a structure formula of $C_{20}H_{14}CoN_4$) on Au substrate, cobalt nitride (Co_2N) monolayer on gold substrate, 2 nm film of cobalt oxide on copper substrate?

2 pts

Problem V

The figure below shows the structure of oligothiophene, an STM image with several oligothiophene molecules with different lengths and $\mathrm{d}I/\mathrm{d}V$ spectra measured on the four highlighted molecules.

- a) Explain what is measured in the $\mathrm{d}I/\mathrm{d}V$ tunneling spectrum and what information can be obtained on a molecular system.
- 3 pts
- b) Why does the first feature on the $\mathrm{d}I/\mathrm{d}V$ spectra shift from molecule to another?
- 1 pts
- c) Given the molecular lengths (38 Å, 21 Å, 15 Å, 10 Å), estimate the effective mass of electrons in oligothiophene.
- 2 pts

nergies in e'	energies in e'	ner	ner	ner	ner	•	
nergies in	ner	ner	ner	ner	ner	•	Ü
nergies	ner	ner	ner	ner	ner		⊑
nergi	ner	ner	ner	ner	ner		S
ner	ner	ner	ner	ner	ner	•	ᇑ
ĕ	ene	ng en	ing ene	ding ene	nding en	100	=
	a	lg e	ing e	ding e	nding e		Ĕ

4p _{3/2} 58.3 546.3	
4P _{1/2} 63.7 642.7	
4s 97 762.1	
3d _{5/2} 368.3 2206	
3d _{3/2} 374 2291	
3p _{3/2} 59.9 75.1 573 2743	5p _{3/2} 57.2
3p _{1/2} 58.9 77.3 603.8 3148	5p _{1/2} 74.2
35 101 122.5 719 3425	5s 107.2
2p _{3/2} 162.5 778.1 932.7 3351 11919	4f _{7/2} 84
2p _{1/2} 163.6 793.2 952.3 3524 13734	4f _{5/2} 87.6
2s 37.3 41.6 230.9 925.1 1096.7 3806 14353	4d _{5/2} 335.1
18 284.2 409.9 543.1 2472 7709 8979 25514 80725	4d _{3/2} 353.2
Element C N O C Cu Cu	Αn