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ELEC-E8101 Digital and Optimal Control

Final Exam (13.12.2017) - Solution

1. For each of the following statements, state if it is correct or not. Justify your answer.

(a) For removing the steady-state error from, e.g., a step-response of a system, we need to
apply derivative control. [1p]

(b) The eigenvalues to a general system x[k + 1] = Φx[k] + Γu[k] can always be placed
anywhere using state-feedback. [1p]

(c) If a linear system is reachable the state can be made to follow any trajectory. [1p]

(d) If linear system is reachable the state can be made to go between any two initial and
final values. [1p]

(e) Suppose x(t) is a low-pass signal with X(iω) = 0 ∀|ω| > |ω0|. Then, x(t) can be uniquely

determined if its samples x(nTs), n = 0,±1,±2, . . . satisfy
2π

Ts
> 2ω0. [1p]

(f) When discretizing a continuous-time system with poles λ1, λ2, . . . , λn, with |λmax| ,
maxi |λi|, using the state-space representation with sampling h and zero-order hold
(ZOH), then the stability of the analog system is preserved and if h < π/|λmax| there is
no aliasing. [2p]

(g) The separation principle tells us that the control design and the observer design cannot
be done independently of each other. [1p]

(h) Given the sequences {x[k1], x[k2], . . . , x[kn]} and {x[k1 + k], x[k2 + k], . . . , x[kn + k]}.
We say that the stochastic process is called stationary if the two first moments of the
distributions (mean and covariance) are the same for all values of k. [1p]

(i) The optimal predictor is better when considering a large prediction horizon. [1p]

Solution.

(a) False. The steady-state error is removed by applying integral control. Derivative control
aims at reducing the changes in the state.

(b) False. Arbitrary eigenvalue-placement is only possible when the system is reachable
(completely controllable).

(c) False. If a system is reachable, then it can move between any two states. But, it can
not move (in general) along any trajectory.

(d) True. As stated above, a reachable system can move between any two states.

(e) True. Otherwise, there is aliasing.

(f) True. This can be divided into 2 parts: stability and aliasing.
Stability: Let λi(A) = −σi + jωi, σi > 0. Then:

λi(Φ) = e(−σi+jωi)h = e−σihejωih ⇒ |λi(Φ)| = e−σih|ejωih| = e−σih < 1



Aliasing: To avoid aliasing:

2π

h
> 2ωi ⇒ h <

π

|λmax|
≤ π
ωi

(g) False. Actually, it tells us the complete opposite – that control and observer design can
be decoupled.

(h) False. A stochastic process is called stationary if the finite-dimensional distributions of
{x[k1], x[k2], . . . , x[kn]} and {x[k1+k], x[k2+k], . . . , x[kn+k]} are identical. The process
is weakly stationary, if the two first moments of the distributions (mean and covariance)
are the same for all values of k. The value of the covariance function then depends only
on the time difference.

(i) False. The optimal predictor is better when considering a small prediction horizon (cf.
σ2ỹ = (1 + f21 + . . .+ f2m−1)σ

2
e).



(Turn over)

2. a) Consider the following ARMA-process:

y[k + 2]− 1.5y[k + 1] + 0.5y[k] = 2
(
e[k + 2]− 1.2e[k + 1] + 0.6e[k]

)
,

where {e[k]} is a sequence of independent normal random variables with zero mean
and unit variance. Determine the 2-step predictor which minimizes the mean square
prediction error. [5p]

b) Consider the following ARMAX-process:

y[k + 3]− 1.7y[k + 2] + 0.7y[k + 1] = u[k + 1] + 0.5u[k] + e[k + 3]− 0.9e[k + 2],

where {e[k]} is a sequence of independent normal random variables with zero mean and
unit variance. Determine the minimum-variance controller and the minimum achievable
variance. [5p]

Solution.

a) The pulse transfer function (using the shift operator) is:

y[k] =
C ′(q)

A(q)
e[k] =

2(q2 − 1.2q + 0.6)

q2 − 1.5q + 0.5
e[k]

The polynomials C ′(q) and A(q) have to be monic, i.e., the coefficient of the highest q-
term of the polynomial has to be one. Only then the equations for the m-step predictor
hold. Obviously, C ′(q) is not monic, thus we have to make it monic by doing the
following: let v[k] , 2e[k]. Then,

C ′(q)e[k] = (q2 − 1.2q + 0.6)︸ ︷︷ ︸
C(q)

v[k]

Note that

E{v[k]} = E{2e[k]} = 2E{e[k]} = 0

var{v[k]} , σ2v = E{v2[k]} = E{4e2[k]} = 4E{e2[k]} = 4

Now the process model is:

y[k] =
C(q)

A(q)
v[k] =

q2 − 1.2q + 0.6

q2 − 1.5q + 0.5
v[k]

Now, we need to solve the equation

qm−1C(q) = A(q)F (q) +G(q),

for F (q) and G(q), where

F (q) = qm−1 + f1q
m−2 + . . . fm−1,

G(q) = g0q
n−1 + g1q

n−2 + . . . gn−1.

Since we are dealing with a 2-step predictor (m=2), F (q) and G(q) become

F (q) = q + f1

G(q) = g0q + g1



Therefore,

q(q2 − 1.2q + 0.6) ≡ (q2 − 1.5q + 0.5)(q + f1) + (g0q + g1)

q3 − 1.2q2 + 0.6q ≡ q3 + (f1 − 1.5)q2 + (0.5 + g0 − 1.5f1)q + (0.5f1 + g1)

⇒


f1 = 0.3

g0 = 0.6− 0.5 + 1.5(0.3) = 0.1 + 0.45 = 0.55

g1 = −0.5(0.3) = −0.15

Therefore, the 2-step predictor is given by

ŷ[k + 2|k] =
qG(q)

C(q)
y[k] =

0.55q2 − 0.15q

q2 − 1.2q + 0.6
y[k]

and the variance of the prediction error:

var{y[k + 1|k]} = (1 + f21 )σ2v =
(
1 + (0.3)2

)
4 = (1.09)4 = 4.36.

b) The pulse transfer function (using the shift operator) is:

(q3 − 1.7q2 + 0.7q)y[k] = (q + 0.5)u[k] + (q3 − 0.9q2)e[k]

y[k] =
q + 0.5

q3 − 1.7q2 + 0.7q
u[k] +

q3 − 0.9q2

q3 − 1.7q2 + 0.7q
e[k]

Hence, we get the polynomials:
A(q) = q3 − 1.7q2 + 0.7q

B(q) = q + 0.5

C(q) = q3 − 0.9q2

Now, we need to solve the equation

qd−1C(q) = F (q)A(q) +G(q).

for F (q) and G(q), where

F (q) = qd−1 + f1q
d−2 + . . .+ fd−1

G(q) = g0q
n−1 + g1q

n−2 + . . .+ gn−1

where d is pole excess of the system

d = degA− degB.

Therefore, since d = 3− 1 = 2, we get

q(q3 − 0.9q2) ≡ (q3 − 1.7q2 + 0.7q)(q + f1) + (g0q
2 + g1q + g2)

q4 − 0.9q3 ≡ q4 + (f1 − 1.7)q3 + (g0 − 1.7f1 + 0.7)q2 + (0.7f1 + g1)q + g2

⇒


f1 − 1.7 = −0.9⇒ f1 = 0.8

g0 = 1.7f1 − 0.7 = 1.7(0.8)− 0.7 = 1.36− 0.7 = 0.66

g1 = −0.7f1 = −0.7(0.8) = −0.56

g2 = 0
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This gives the polynomials

F (q) = q + 0.8

G(q) = 0.66q2 − 0.56q

and the minimum variance control law becomes:

u[k] = − G(q)

B(q)F (q)
y[k] = − 0.66q2 − 0.56q

(q + 0.5)(q + 0.8)
y[k].

The variance of the output y is:

var{y[k]} = (1 + f21 )σ2e =
(
1 + (0.8)2

)
1 = 1.64.



3. The double integrator is a common process in mechanical models. Its differential equation
form is

d2y(t)

dt2
= u(t).

a) Show that the discrete-time state-space representation of the double integrator when we
use ZOH and sampling time h is given by [5p]

x(kh+ h) =

[
1 h
0 1

]
x(kh) +

[
h2/2
h

]
u(kh)

y(kh) =
[
1 0

]
x(kh)

Hint: Find the continuous-time state-space representation first.

b) We consider linear, static state-feedback, i.e., u[k] = −Lx[k] = −
[
l1 l2

]
x[k] for con-

trolling the sampled double-integrator plant. The desired closed-loop poles are given by
the following characteristic equation:

z2 + p1z + p2 = 0.

Show that the controller parameter vector L =
[
l1 l2

]
is given by [4p]

l1 =
1

h2
(1 + p1 + p2),

l2 =
1

2h
(3 + p1 − p2).

c) Determine the deadbeat controller L for h = 1. [2p]

d) Design a deadbeat-type state observer to the system. [4p]

Solution.

a) Set x1 = y, x2 = dy/dt and x =

[
x1
x2

]
. Then,

ẋ1 = x2

ẋ2 =
d2y

dt2
= u(t)

⇒

ẋ(t) =

[
0 1

0 0

]
x(t) +

[
0

1

]
u(t)

y(t) =
[
1 0

]
x(t)

We need to find Φ(h) and Γ(h):

Φ(h) = eAh = I + hA+
1

2
h2A2 +

1

6
h3A3 + . . . =

∞∑
n=0

1

n!
hnAn

=

[
1 0
0 1

]
+ h

[
0 1
0 0

]
+ 0 =

[
1 h
0 1

]
Γ(h) =

∫ h

0
eAsdsB =

∫ h

0

[
1 s
0 1

]
ds

[
0
1

]
=

∫ h

0

[
1 s
0 1

] [
0
1

]
ds

=

∫ h

0

[
s
1

]
ds =

[
h2/2
h

]
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Therefore,

x(kh+ h) =

[
1 h
0 1

]
x(kh) +

[
h2/2
h

]
u(kh)

y(kh) =
[
1 0

]
x(kh)

b) With the controller u[k] = −Lx[k] = −
[
l1 l2

]
x[k], the system becomes:

x[k + 1] =

[
1 h
0 1

]
x[k]−

[
h2/2
h

] [
l1 l2

]
x[k] =

[
1− l1h2/2 h− l2h2/2
−l1h 1− l2h

]
x[k]

Take the characteristic equation:

z2 +

(
l1h

2

2
+ l2h− 2

)
z −

(
l1h

2

2
− l2h+ 1

)
= 0

Now, we compare with the desired characteristic equation

⇒


l1h2

2 + l2h− 2 = p1

l1h2

2 − l2h+ 1 = p2
⇒

l1 = 1
h2

(1 + p1 + p2)

l2 = 1
2h(3 + p1 − p2)

c) For deadbeat control p1 = p2 = 0. Therefore, for h = 1,l1 = 1
h2

(1 + p1 + p2)

l2 = 1
2h(3 + p1 − p2)

⇒

l1 = 1

l2 = 3
2

d) The characteristic equation is given by

det(zI − Φo) = det(zI − Φ +KC)

= det

(
z

[
1 0
0 1

]
−
[
1 h
0 1

]
+

[
k1
k2

] [
1 0

])
=

∣∣∣∣z − 1 + k1 −h
k2 z − 1

∣∣∣∣
= (z − 1 + k1)(z − 1) + k2h

= z2 − z + k1z − z + 1− k1 + k2h

= z2 + (k1 − 2)z + (k2h− k1 + 1) = 0

Therefore, for having the poles at zero,{
k1 = 2

k2 = k1−1
h = 1

h .



4. Consider the system described by the figure below:

R(z) Y (z)
K(z) P (z)Σ

+

−

E(z) U(z)

where input signal r[k] is the input and the pulse transfer function of the process is

P (z) =
1

z − 0.5
.

a) Suppose K(z) = K,K > 0 (Proportional-controller). The control algorithm is

u(kh) = K
(
r(kh− τ)− y(kh− τ)

)
,

where τ is a computational/processing delay.

i) Determine the values of gain K for which the closed-loop system is stable, for (1)
τ = 0 and (2) τ = h. [5p]

ii) Consider the closed-loop system and let the input r[k] be a unit step. Find, as a
function of gain K, the steady-state value of y[k] (i.e., the limk→∞ y[k]) when this
is finite, stating for which values of K the answer is valid, for τ = 0 and τ = h. [4p]

iii) Is there a gain K for which you can achieve a zero steady-state error? [1p]

b) You want the steady state error e[k] (i.e., limk→∞ e[k]) to be zero when the input r[k] is
a unit step. Design a controller K(z) (or modify the existing one) such that the system
(1) is stable and (2) has zero steady-state error for τ = h. [5p]

Solution.

a) i) τ = 0: The closed-loop pulse transfer function is:

Gcl(z) =
KP (z)

1 +KP (z)
=

K 1
z−0.5

1 +K 1
z−0.5

=
K

z − 0.5 +K
.

This pulse transfer function has pole at p1 = 0.5 − K. The stability condition is:
|p1| < 1. Therefore,

|0.5−K| < 1⇒ −1 < 0.5−K < 1⇒ −0.5 < K < 1.5.

Note that it was already assumed in the problem statement that K > 0, therefore
0 < K < 1.5.

τ = h: The control law now becomes

u(kh) = K
(
r(kh− h)− y(kh− h)

)
.

Taking z-transforms:

U(z) = K
(
z−1R(z)− z−1Y (z)

)
= Kz−1(R(z)− Y (z)) = Kz−1E(z).
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Hence, the closed-loop pulse transfer function becomes:

Gcl(z) =
K(z)P (z)

1 +K(z)P (z)
=

K
z

1
z−0.5

1 + K
z

1
z−0.5

=
K

z(z − 0.5) +K
.

The characteristic equation is, therefore, z2 − 0.5z + K = 0. Taking the triangle
rule: 

K < 1

K > −(−0.5)− 1 = −0.5

K > (−0.5)− 1 = −1.5

Since it was already assumed in the problem statement that K > 0, therefore
0 < K < 1.

ii) τ = 0: Applying the Final Value Theorem (FVT):

lim
k→∞

y[k] = lim
z→1

(1− z)Y (z) = lim
z→1

{
K

z − 0.5 +K

}
=

K

K + 0.5

The answer is valid for the values of K for which the system is stable, i.e., 0 < K <
1.5.

τ = h: Applying the Final Value Theorem (FVT):

lim
k→∞

y[k] = lim
z→1

(1− z)Y (z) = lim
z→1

{
K

z(z − 0.5) +K

}
=

K

K + 0.5

The answer is valid for the values of K for which the system is stable, i.e., 0 < K < 1.

iii) No. As it can be seen by the FVT, only if K →∞ the steady-state error would go
to zero, but the system becomes unstable much earlier.

b) There are many ways to solve this one. Here, I give a simple approach (for τ = 0), in
which we consider a PI-controller with equal gains. i.e.,

K(z) = K +
K

z − 1
=
K(z − 1) +K

z − 1
=

Kz

z − 1

Hence, the closed-loop pulse transfer function becomes:

Gcl(z) =
K(z)P (z)

1 +K(z)P (z)
=

Kz
z−1

1
z−0.5

1 + Kz
z−1

1
z−0.5

=
Kz

(z − 1)(z − 0.5) +Kz
=

Kz

z2 + (K − 1.5)z + 0.5
.

The characteristic equation is, therefore, z2 + (K − 1.5)z + 0.5 = 0. Taking the triangle
rule: 

0.5 < 1

0.5 > −(K − 1.5)− 1⇒ K > 1.5− 1− 0.5 = 0

0.5 > (K − 1.5)− 1⇒ K < 3

Therefore, 0 < K < 3.



Applying the Final Value Theorem (FVT):

lim
k→∞

y[k] = lim
z→1

(1− z)Y (z) = lim
z→1

{
Kz

z2 + (K − 1.5)z + 0.5

}
=

K

1 +K − 1.5 + 0.5
=
K

K
= 1

When τ = h, the closed-loop pulse transfer function becomes:

Gcl(z) =
K(z)P (z)

1 +K(z)P (z)
=

K
z−1

1
z−0.5

1 + K
z−1

1
z−0.5

=
K

(z − 1)(z − 0.5) +K
=

K

z2 − 1.5z + (0.5 +K)
.

The characteristic equation is, therefore, z2 − 1.5z + (0.5 +K) = 0. Taking the triangle
rule: 

0.5 +K < 1⇒ K < 0.5

0.5 +K > −(−1.5)− 1⇒ K > 1.5− 1− 0.5 = 0

0.5 +K > (−1.5)− 1⇒ K > −3

Therefore, 0 < K < 0.5.

Applying the Final Value Theorem (FVT):

lim
k→∞

y[k] = lim
z→1

(1− z)Y (z) = lim
z→1

{
K

z2 − 1.5z + (0.5 +K)

}
=

K

1− 1.5 + 0.5 +K
=
K

K
= 1


