ELEC-E8001 Embedded Real-Time Systems

EXAM 14.12.2018 MODEL ANSWERS

1. Consider the following techniques that may be used for improving the performance of CPUs:

>

Increase the CPU clock frequency

Use a superscalar architecture

Use a two-level data cache

Use a Very Long Instruction Word (VLIW) architecture

Use a wider address bus

Use a wider data bus

Use an instruction cache

Use an instruction pipeline

Use the enhanced von Neumann architecture instead of the Princeton architecture

ST IO mMmoOO0®

Use the Harvard architecture instead of the traditional von Neumann architecture

Which of these are well-behaving since they do not lead to increasing uncertainty (i.e., random variation) in
real-time system’s response times? (6 p)

A, D, E F, 1, 1J are well-behaving.
+1 p for each correct answer
—1.5 p for each incorrect one (B, C, G, H)

Maximum 6 p and minimum 0 p

Somewhat similar to Homework #6A.

ELEC-E8001 Embedded Real-Time Systems

EXAM 14.12.2018 MODEL ANSWERS

2. A motor control system running on a single-core CPU has five parallel tasks with the following specifications
(pi = execution period and e; = execution time; i=1, 2,3, 4, 5):

CAN COMMUNICATIONS p1=100 ms e1=5ms
MAINTENANCE TOOL p2=20ms e2=2ms
SELF-DIAGNOSTICS p3 =500 ms e3=25ms
TORQUE CONTROL LooP pa="? es=0.05ms
VELOCITY CONTROL LOOP ps=1ms es=0.1ms

a) How shall the execution period of the TORQUE CONTROL LOOP (= p4) be chosen to have a 95% CPU utilization
factor? (4 p)
b) How would you assign the priorities for these tasks according to the Rate-Monotonic principle? (2 p)

U =5ms/100 ms + 2 ms/20 ms + 25 ms/500 ms + 0.05 ms/ps + 0.1 ms/1 ms = 0.95
U=0.3+0.05ms/ps=0.95
pa =0.077 ms

Similar to Homework #2B.

b)

1. ToraQue CONTROL LOOP (Highest priority)
2. VELocITY CONTROL LOOP

3. MAINTENANCE TOOL

4. CAN COMMUNICATIONS

5. SELF-DIAGNOSTICS (Lowest priority)

Textbook pp. 102-104.

ELEC-E8001 Embedded Real-Time Systems

EXAM 14.12.2018 MODEL ANSWERS

3. You have available one 12-bit analog-to-digital (A/D) converter, one four-channel analog multiplexer (MUX),
and a few sample-and-hold (S&H) circuits. In addition, your 16-bit microcomputer has several free 1/0 lines
that could be used, for instance, for controlling the MUX.

How could you implement a real-time measurement system with these components, which could perform the
measurement of two analog voltages exactly at the same time instant? Assumption: the two voltages, U; and
U,, are readily scaled to correspond to the input range of the MUX and A/D converter. Draw a block diagram
of your measurement system and explain its operating sequence. (6 p)

— S&H

— S&H

MUX A/D —
To microcomputer

/*gg /

Sample Select channel
It is necessary to use individual S&H circuits in the two measurement channels that require simultaneous sampling.
The microcomputer gives a concurrent “Sample” command through one of its output lines to these S&H circuits that
memorize their analog inputs for a short period of time. After this, the S&H outputs are converted sequentially to the
digital form by the A/D converter. This is accomplished by connecting one S&H output at a time to the A/D converter
by selecting the desired channel of the MUX (two output lines “Select channel” are needed for this). Although the
digital samples become available one after another, they still correspond to the same sampling instant.

Highly similar to Homework #7B.

ELEC-E8001 Embedded Real-Time Systems

EXAM 14.12.2018 MODEL ANSWERS

4, Priority inversion may occur in a multitasking real-time system under certain conditions.

a) Why is it harmful? (1 p)

b) Show with an execution scenario how the priority inversion occurs in a three-task system under the control
of an RTOS with preemptive-priority scheduling. (3 p)

c¢) What is the common solution to such a priority inversion problem, and how would it work in your
scenario? (2 p)

b)

Example: Priority Inversion Problem

Let three tasks, 1;, T,, and T;, have decreasing priorities (i.e., T, > T, > T,
where “>" is the precedence symbol), and 1, and 1; share some data or
resource that requires exclusive access, while 1, does not interact with either
of the other two tasks. Access to the critical section is carried out through
the wait and signal operations on semaphore s.

Now, consider the following execution scenario, illustrated in Figure 3.14.
Task 15 starts at time #,, and locks semaphore s at time ¢,. At time #,, T, arrives
and preempts T; inside its critical section. After a while, T, requests to use
the shared resource by attempting to lock s, but it gets blocked, as 1; is
currently using it. Hence, at time £, T; continues to execute inside its critical
section. Next, when 1, arrives at time 4, it preempts T, as it has a higher

T, < >

Normal Execution

T

2

Critical
Section

- W

t

w

t t t t t t

0 1 2 3 4 5 6 8

Figure 3.14. A typical priority-inversion scenario.

priority and does not interact with either t, or 1;. The execution time of T,
increases the blocking time of 7;, as it is no longer dependent solely on the

a) length of the critical section executed by 7,. Similar unfair conditions could
also arise between other intermediate priority tasks—if available—and
thereby could lead to an excessive blocking delay. Task T, resumes its execu-
tion at time f;, when T; finally completes its critical section. A priority inver-
sion is said to occur within the time interval [#,, t5], during which the highest
priority task, 7;, has been unduly prevented from execution by a medium-
priority task T,. On the other hand, the acceptable blocking of 7, during the
periods [, 1,] and [ts, t5] by T3, which holds the lock, is necessary to maintain
the integrity of the shared resources.

The problem of priority inversion in real-time systems has been studied inten-
sively for both fixed-priority and dynamic-priority scheduling. One useful

C) result, the priority inheritance protocol (Sha et al., 1990), offers a simple solu-
tion to the problem of unbounded priority inversion.

In the priority inheritance protocol, the priorities of tasks are dynamically
adjusted so that the priority of any task in a critical region gets the priority of
the highest-priority task pending on that same critical region. In particular,
when a task, T;, blocks one or more higher-priority tasks, it temporarily inherits
the highest priority of the blocked tasks. The fundamental principles of the
protocol are:

ELEC-E8001 Embedded Real-Time Systems

EXAM 14.12.2018 MODEL ANSWERS

Blocked .
T 1

Priority

Inherited Normal Execution
Critical T,
Section
T Priority
3 Reverted
L te t t, Time

Figure 3.15. Illustration of the priority-inheritance protocol.

Textbook example pp. 118-120.

ELEC-E8001 Embedded Real-Time Systems

EXAM 14.12.2018 MODEL ANSWERS

5. What is the worst case response time for the background task in a simple foreground/background system in
which the background task requires 75 ms to complete, the foreground task executes every 50 ms (periodical

timer interrupt) and requires 25 ms to complete, and each context switching takes 0.1 ms. lllustrate the
execution sequence by a timeline. (6 p)

0.1 ms 0.1ms 1 context switch= 0.1 ms
25 ms
0.6 ms

i Time
0 175.8 ms
Background task is just startingto run

The worst case is shown above: The background task is just starting to run, but it is preempted by the foreground task
that executes to completion in 25 ms, then the background task executes 24.8 ms because it is preempted again due
to the 50 ms execution period of the foreground task (0.1 ms + 25 ms + 0.1 ms + 24.8 ms = 50 ms), etc. Hence, the
worst case response timeis4 *25ms+3 *24.8 ms+0.6 ms+8 * 0.1 ms = 175.8 ms.

Highly similar to Homework #11A.

