Advanced Quantum Mechanics PHYS-E0414 12 December 2018

Exam

- Q1. (1p.) Consider the spatial and temporal translation operators $\hat{\mathcal{T}}(\delta x)|x\rangle = |x+\delta x\rangle$ and $\hat{U}(\delta t)\psi(x,t) = \psi(x,t+\delta t)$. For infinitesimal δx and δt , $\hat{\mathcal{T}}(\delta x) = \hat{I} \frac{i\delta x}{\hbar}\hat{p}$ and $\hat{U}(\delta t) = \hat{I} \frac{i\delta t}{\hbar}\hat{H}$.
- a) Explain why in the expressions above we must have the identity \hat{I} , the imaginary i, Planck's (reduced) constant \hbar , the momentum \hat{p} , and the Hamiltonian \hat{H} .
- b) For time-independent \hat{p} and \hat{H} , we have in general the finite translations $\hat{T}(\Delta x) = \exp(-i\Delta x \hat{p}/\hbar)$ and $\hat{U}(\Delta t) = \exp(-i\Delta t \hat{H}/\hbar)$. Verify that they yield the correct infinitesimal expressions. For a free particle, show that

$$\psi(x + \Delta x, t + \Delta t) = \exp(-iE\Delta t/\hbar + iP\Delta x/\hbar)\psi(x, t),$$

with E and P the eigenvalues of the Hamiltonian and the momentum operator, respectively.

Q2. (1p.) Consider the following equation in position space

$$(\nabla^2 + k^2)G(\vec{r}) = \delta^3(\vec{r}).$$

- a) How is it related to time-independent scattering problems?
- b) Find the Fourier transform of the Green's function $G(\vec{r})$ satisfying the equation.
- Q3. (0.5p) Formulate Bloch's theorem and very briefly explain how it is applied.
- Q4. (1p.) The operator associated with the velocity of a particle with mass m can be defined as $\hat{\mathbf{V}} = \hat{\mathbf{P}}/m$, with $\hat{\mathbf{P}}$ the momentum operator.
 - (a) How is the velocity operator modified in the presence of a uniform magnetic field?
 - (b) Consider a uniform magnetic field in an arbitrary direction of space, calculate the commutator $[\hat{V}_x,\hat{V}_y]$.

Q5. (2p.) The Hamiltonian of two interacting spin-1/2 particles is given by $\hat{H} = \gamma \hat{\mathbf{S}}_{(1)} \cdot \hat{\mathbf{S}}_{(2)}$, where $\hat{\mathbf{S}}_{(1)}$ and $\hat{\mathbf{S}}_{(2)}$ are the spin operators for particles 1 and 2, respectively, and γ is a constant. Write the matrix representation of \hat{H} in the basis of two spins, i.e., $\{|\uparrow\uparrow\rangle,|\downarrow\downarrow\rangle,|\downarrow\uparrow\rangle,|\downarrow\downarrow\rangle\}$ and find the eigenvalues of \hat{H} .

 ${\it Hint:}$ You can use the following properties of the angular momentum operators:

$$\begin{split} \hat{J}_{i}^{2}|j_{1},m_{1};j_{2},m_{2}\rangle &= \hbar^{2}j_{i}(j_{i}+1)|j_{1},m_{1};j_{2},m_{2}\rangle\,,\\ \hat{J}_{i,z}|j_{1},m_{1};j_{2},m_{2}\rangle &= \hbar m_{i}|j_{1},m_{1};j_{2},m_{2}\rangle\,,\\ \hat{J}^{2}|j_{1},j_{2};jm\rangle &= \hbar^{2}j(j+1)|j_{1},j_{2};jm\rangle\,,\\ \hat{J}_{z}|j_{1},j_{2};jm\rangle &= \hbar m|j_{1},j_{2};jm\rangle\,, \end{split}$$

with i=1,2. Additionally, for the ladder operators $\hat{J}_{\pm}=\hat{J}_x\pm i\hat{J}_y$, we have

$$\hat{J}_{\pm}|j,m\rangle = \hbar\sqrt{j(j+1) - m(m\pm 1)}|j,m\pm 1\rangle$$
.

- Q6. (1p.) The entropy of a quantum state, expressed as a density matrix ρ , is $S(\rho) = -\text{Tr}(\rho \log_2 \rho)$; in terms of its eigenvalues λ_k this is $S(\rho) = -\sum_k \lambda_k \log_2 \lambda_k$
 - (a) Calculate the entropy $S(\rho_0)$ for $\rho_0 = |0\rangle \langle 0|$.
 - (b) Calculate the entropy of $\rho_1 = \frac{1}{2} (|0\rangle \langle 0| + |1\rangle \langle 1|)$.
 - (c) A state ρ is a pure state if and only if $\text{Tr}(\rho^2) = 1$. Prove that this expression is equivalent to $S(\rho) = 0$ for positive eigenvalues of ρ .
 - (d) Find whether ρ_0 or ρ_1 is a pure state.
- Q7. (2p.) Consider a one-dimensional infinite potential well of length L, with single-particle eigenenergies E_n and eigenstates ϕ_n , for integer n:

$$V(x) = \left\{ \begin{array}{ll} 0 & , 0 \leq x \leq L \\ \infty & , \text{otherwise} \end{array} \right., \quad E_n = \frac{\pi^2 \hbar^2}{2mL^2} n^2, \quad \psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi}{L}x\right).$$

- (a) Suppose two *identical spin-zero bosons* are placed in the potential well. Find the wave functions and energies for the ground state and the first two excited states of the system.
- (b) Consider now that the two bosons interact with each other through the perturbing potential $V'(x_1,x_2)=-V_0L\delta(x_1-x_2)$, with V_0 real and $\delta(x_1-x_2)$ the Dirac delta function. Assume $V_0\ll 1$ and compute the first-order correction to the ground state energy of the system.

Hint:

$$\int_{0}^{\beta} dx \sin^{4}(\alpha x) = \frac{1}{32\alpha} \left[12\alpha\beta + \sin(4\alpha\beta) - 8\sin(2\alpha\beta) \right]$$

Q8. (1.5p.) The Fredkin gate ($C_{\rm SWAP}$) is a circuit that transmits the first bit (control bit) unchanged and swaps the last two bits if, and only if, the first bit is one. For example:

$$\begin{split} C_{\text{SWAP}} \left(\left. | 0 \right\rangle_c \otimes \left| 1 \right\rangle_t \otimes \left| 0 \right\rangle_t \right) &= \left(\left. | 0 \right\rangle_c \otimes \left| 1 \right\rangle_t \otimes \left| 0 \right\rangle_t \right) \\ C_{\text{SWAP}} \left(\left. | 1 \right\rangle_c \otimes \left| 1 \right\rangle_t \otimes \left| 0 \right\rangle_t \right) &= \left(\left. | 1 \right\rangle_c \otimes \left| 0 \right\rangle_t \otimes \left| 1 \right\rangle_t \right) \end{split}$$

The Toffoli gate (C_{CNOT}) is a circuit that inverts the target bit if the two control bits are both set to 1, otherwise all bits stay the same. For example:

$$\begin{split} C_{\text{CNOT}} \big(& |1\rangle_c \otimes |0\rangle_t \otimes |1\rangle_c \big) = & |1\rangle_c \otimes |1\rangle_t \otimes |1\rangle_c \\ C_{\text{CNOT}} \big(& |0\rangle_c \otimes |1\rangle_c \otimes |0\rangle_t \big) = & |0\rangle_c \otimes |1\rangle_c \otimes |0\rangle_t \end{split}$$

Construct the Fredkin gate by using three Toffoli gates.

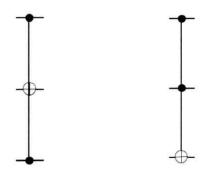


Figure: Examples of Two Toffoli gates with \bullet the control (c) and \oplus the target (t) bits.