Question 1:

- (a) Briefly explain what a group is. (3)
- (b) For an element x of a group G, explain what is meant by the order of x. (3)
- (c) Write down the definition of a subgroup H of a group G, and describe the shortest criterion to be checked in order to verify the subgroup property. (4)

Question 2: Write down a Cayley table of the group \mathbb{Z}_8^{\times} , and determine, whether or not this group is a cyclic group. (10)

Question 3: Let G be a group, and let S be a set of generators of G. Assume that xy = yx for all $x, y \in S$. Prove that G must be abelian. This means, to test whether or not a group is abelian, it suffices to verify the commutative rule on a set of generators. (10)

Question 4: Let G and H be cyclic groups such that G has k elements, and H has n elements. Show that if $\gcd(k,n)=1$, then $G\times H$ is again cyclic. (10) <u>Hint:</u> Find an element in $G\times H$ that is of order kn.

Question 5: Let G be a group. Prove that the mapping $x \mapsto x^{-1}$ is an automorphism of G if and only if G is abelian. (10)

Question 6: Let \mathbb{C}^{\times} denote the multiplicative group of non-zero complex numbers, and let \mathbb{R}^{\times} denote the same for real numbers. Consider the absolute value function $\mathbb{C}^{\times} \longrightarrow \mathbb{R}^{\times}, \ z \mapsto |z|$.

- (a) Briefly verify that this function is a homomorphism. (4)
- (b) Determine the kernel of this homomorphism. (6)

Question 7: Let $\varphi: G \longrightarrow H$ be a group homomorphism. Show that if G is cyclic, then $\operatorname{im}(\varphi)$ is cyclic.

Question 8: Let $\varphi: G \longrightarrow G'$ be a surjective group homomorphism, and let H be a normal subgroup of G. Show that $\varphi(H)$ is a normal subgroup of G'. (10)

©Aalto University 2018/19

2 of 3

Question 9: Let G be a group and let x_1, \ldots, x_r be a set of generators of G, which means $G = \langle x_1, \ldots, x_r \rangle$. Finally, let H be a subgroup of G.

- (a) Assuming $x_i^{-1}Hx_i = H$ for all i = 1, ..., r, show that H is normal in G.
- (b) Suppose G is finite, and assume $x_i^{-1}Hx_i \subseteq H$ for all $i=1,\ldots,r$. Show that H is normal in G.
- (c) Again, assume that G is finite, and that H is generated by elements y_1, \ldots, y_m . Assume that $x_i^{-1}y_jx_i \in H$ for all $i=1,\ldots,r$ and $j=1,\ldots,m$. Show that H is normal in G.

Question 10: Let p be a prime number, and let R be the subset of all rational numbers $\frac{m}{n}$ such that $n \neq 0$ and n is not divisible by p. Show that R is a unital ring. (10)

Question 11: Let R be an integral domain, and let $0 \neq a \in R$.

- (a) Show that the mapping $x \mapsto ax$ is an injective mapping of R into itself. (5)
- (b) Use this in order to show, that if R is finite, then R is a field. (5)

Question 12: Let R be a commutative ring. Take it as proven, that the binomial theorem holds, which means that for arbitrary $a, b \in R$ and $n \in \mathbb{N}$ there holds

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^i b^{n-i}.$$

The expressions $\binom{n}{i}$ have to be read as $\binom{n}{i}$ -fold sums of the identity 1, so that these are now elements of R. An element $a \in R$ is called *nilpotent* if $a^n = 0$ for some positive integer n. Show the following:

- (a) If $a \in R$ is nilpotent, then 1 + a and 1 a are invertible elements.

 Hint: Recall a well-known expression for $\frac{1}{1-x}$ and adapt it to this situation.
- (b) The set N(R) of all nilpotent elements in R forms a (two-sided) ideal of R. (6)
- (c) The only nilpotent element of R/N(R) is its zero element N(R). (8)

J. 19