PHYS-E0416 Quantum Physics Midterm Exam 22.02.2019

- 1. Explain briefly the following concepts. (You may use equations if you find it convenient, but it is not necessary.)
 - a) Dipole approximation
 - b) What do we know about symmetry properties of quantum many-body states and to what kind of classification of particles this leads to?
 - c) Spontaneous emission and its connection to quantizing the electromagnetic field
- 2. Derive the Fermi golden rule for the (absorption) transition rate from the initial state $|\psi(t=0)\rangle = |i\rangle$ to a continuous part of the spectrum.
 - a) Start from the first-order time-dependent perturbation theory result

$$\langle f|\psi(t)\rangle \approx \frac{1}{\hbar} \int_0^t dt' \, \langle f|H'(t')|i\rangle e^{i\omega_{\rm fl}t'},$$

where $|i\rangle$ and $|f\rangle$ are the initial and final states of the system, $\omega_{fi} = (E_f - E_i)/\hbar$, and $H'(t) = Ae^{-i\omega t} + A^{\dagger}e^{i\omega t}$ is a harmonic perturbation. Derive the result for resonant absorption probability

$$P_{if}(t) = \frac{1}{\hbar^2} |\langle f|A|i\rangle|^2 \left[\frac{\sin\left[\frac{1}{2}(\omega - \omega_{fi})t\right]}{\frac{1}{2}(\omega - \omega_{fi})} \right]^2, \quad \text{for} \quad \omega \approx \omega_{fi},$$

You can assume that the perturbation is long lasting, such that $|\omega t| \gg 1$.

- b) Using the above transition probability, write the total transition rate out from the initial state $|i\rangle$ when there are several possible final states $|f_n\rangle$ with energies $E_{f,n}=\hbar\omega_n$. You can assume that the coupling $\langle f|A|i\rangle$ is equal for all final states $|f\rangle=|f_n\rangle$. Now write the total transition rate when the final states form a continuum with constant density of states g(E)=g.
- c) Solve the total transition rate and derive the Fermi golden rule. Since off-resonant (non-energy-conserving) processes are strongly suppressed, you are able to do some approximations. The following relation may also prove useful

$$\int_{-\infty}^{\infty} \left[\frac{\sin x}{x} \right]^2 dx = \pi.$$

3. The Hamiltonian in the field operator formulation is

$$H = \int d^3x \left(\frac{\hbar^2}{2m} \nabla \psi^{\dagger}(\mathbf{x}) \nabla \psi(\mathbf{x}) + U(\mathbf{x}) \psi^{\dagger}(\mathbf{x}) \psi(\mathbf{x}) \right)$$

+
$$\frac{1}{2} \int d^3x \int d^3x' \psi^{\dagger}(\mathbf{x}) \psi^{\dagger}(\mathbf{x}') V(\mathbf{x}, \mathbf{x}') \psi(\mathbf{x}') \psi(\mathbf{x}),$$

where U is an external potential, m the mass of the particle, and V the interaction potential. Starting from the Heisenberg equation of motion

$$\hbar \frac{\partial}{\partial t} \psi(\mathbf{x}, t) = -[H, \psi(\mathbf{x}, t)] = -e^{iHt/\hbar}[H, \psi(\mathbf{x}, 0)]e^{-iHt/\hbar}$$

derive the equation of motion for the field operator:

$$\bar{h}\frac{\partial}{\partial t}\psi(\mathbf{x},t) = \left(-\frac{\hbar^2\nabla^2}{2m} + U(\mathbf{x})\right)\psi(\mathbf{x},t) + \int d^3x'\psi^{\dagger}(\mathbf{x}',t)V(\mathbf{x},\mathbf{x}')\psi(\mathbf{x}',t)\psi(\mathbf{x},t). \tag{1}$$

How does the form of this equation relate to the name "second quantization"?

- 4. Consider the coherent state for which $\hat{a}|\alpha\rangle = \alpha|\alpha\rangle$, where \hat{a} is the annihilation operator for a photon. Calculate the fluctuations $\Delta A = \sqrt{\langle \alpha | \hat{A}^2 | \alpha \rangle \langle \alpha | \hat{A} | \alpha \rangle^2}$, when the operator \hat{A} is
 - a) Photon number n
 - b) The quadrature $\hat{q} = \sqrt{\frac{\hbar}{2\omega}}(\hat{a} + \hat{a}^{\dagger})$
 - c) The quadrature $\hat{p} = -i\sqrt{\frac{\hbar\omega}{2}}(\hat{a} \hat{a}^{\dagger})$

By computing $\Delta q \Delta p$ show that coherent state is a minimum uncertainty state. In case of vacuum, $\alpha = 0$, how does your result for Δn reflect energy conservation?