Aalto University, School of Science
Department of Computer Science
Tommi Junttila (050-4300861)

CS-A1140 Data structures and algorithms
Exam February 21st, 2019, at 13:00-16:00

Autumn 2018

Use of calculators is not allowed in the exam.

You can answer the questions in English, Finnish or Swedish. Note: your answers should
be clear, well structured and concise.

1. (a) A fixed-size mutable array (Array in Scala) does not support efficient insertion of
new elements at the end of the array. But mutable resizable arrays (ArrayBuffer in
Scala) support such operations in amortized constant time — explain how this
is done and what “amortized constant time” means (proofs with recurrences are
not required).

(b) A mutable queue data structure supports the following operations:

* enqueue(e), which adds the element e at the end of the queue, and

¢ dequeue(), which removes and returns the first element in the queue.
Describe how such a data structure can be implemented so that both of these
operations can be performed in constant time.

10 points
2. Define the following concepts: (a) a sorting algorithm that works in-place, and (b) a

stable sorting algorithm.
Consider the Scala program on the

def sort(a: Array[Int]): Unit = {
right. (1) Which well-known sorting val aux = new Array[Int](a.length)
def helper(l: Int, m: Int, r: Int): Unit = {

algorithm does it implement? (ii) Is

/1 it(a(m-1) <= a(m)) return

the algorithm stable? (iii) Does the al- var (i, j.d) = (. m I)
N . " . while(i <m&8 j <= r) |
gorithm work in-place? (iv) What is it(a(i) <= a(])) {aux(d) = a(i); i += 1}
the worst-case running time of the pro- sise {aux(d) = a(); | += 1)
. =
gram? (v) What is the best-case run-
: G 2 = while(i <m) (aux(d) = a(i); i += 1; d += 1 }
ning time of the program? - (v1). Do WAISH] o's] (RATS) = ST] o W
the worst and best case running times d=1

while(d <= r) (a(d) = aux(d); d += 1 }

change if we uncomment the first line)

in the method HELPER?

def inner(l: Int, r: Int): Unit = {
In questions (iv), (v) and (vi), denote ”‘v'.l‘m'l ' p——
the length of the argument array a with inner (1, m)

n.
Justify each answer with at most few
sentences.

inner(m+1, r)
helper(l, m+1, r)
}

}
inner(0, a.length—1)

13 points

3. Explain how hashing and hash tables can be used to implement a mutable set data
structure when “open addressing” (also called “closed hashing”) is used as the col-
lision resolution method. Your explanation should include answers to the following

1

questions: (i) What is a “hash function”? (ii) What do the terms “collision” and “load
factor” mean? (iii) What does “rehashing” mean and when/why should one perform
it? (iv) Define the concept “probe sequence”; what properties should such a sequence
have? (v) How does “linear probing” work?

Assume that we are using a hash table for storing 32-bit integers. Let the size m of
the hash table be 11 in the beginning. Use the hash function h(x) = x mod m and
open addressing with linear probing as the collision resolution method. Describe the
contents of the hash table (after each step) when the keys 12, 3, 24, and 1 are inserted,
in this order, in the table. 8 points

4. Explain (with pseudo-code or with a very clear and structured verbal description)
Dijkstra’s algorithm for finding shortest paths in edge-weighted directed graphs with
non-negative edge-weights. What kind of data structures are needed in the algorithm?
Describe/illustrate how the algorithm works on the
graph shown on the right when the source vertex is the Vol 1 ~N®
vertex a. /tl\ 5711
Given an edge-weighted directed graph G = (V,E,w) 5 3 1
with |V| = n vertices and |E| = m edges, what is the f{ % /5
worst-case running time of the algorithm? Justify your (2 —6 —¥b—1—¥¢
answer with few sentences.

Explain (perhaps with a simple example) why the algorithm does not necessarily work

when the edge-weights can be negative. 12 points
5. Consider the Scala program on the 4 parMax(a: Array[Int]): Int = {
right. It computes the maximum of require(a.nonEmpty)
< 5 def inner(start: Int, end: Int):Int=({
an array of integers in parallel. The it (starl == end) a(start)
par.parallel(code1,code2) construction is slae {

o % = val mid = start + (end — start)/2
as in the lecture material, executing val (I, r) = par.parallel(
codel and code? in parallel and return- inner(start, mid),

. . 3 inner(mid+1, end)
ing their return values. What are the (i))
span, (ii) work, and (iii) amount of paral- I mex r

lelism of the program? Denote the length } :

of the argument array by n and justify : inner{0; 'a:length~1)
each answer with at most few sentences.
How could the program be improved to

work faster in practise?)
8 points

6. Define the following concepts:

* A polynomial-time solvable decision problem.
A decision problem in NP (non-deterministic polynomial time).
e An NP-complete problem.

Describe one NP-complete problem and two different approaches for solving it in prac-
tise (detailed algorithms are not required). 8 points

7. At what time did you finish answering the exam questions? 1 points

