PHYS-E0422 Soft Condensed Matter Physics, exam 11.04.2019 (5 problems, 2 pages)

No auxiliary written material is allowed (tables, notes etc.).

A standard calculator accepted in the Finnish matriculation examinations (yo-kirjoitukset) is allowed.

Problem 1. (6p)

Experiments with viscoelastic materials.

- a) A creep experiment is performed with a silly putty. Make graphs illustrating the applied stress as a function of time and the resulting strain as a function of time. Explain the results.
- b) A force relaxation experiment is performed with a biological tissue. Make graphs illustrating the applied strain as a function of time and the resulting stress as a function of time. Explain the results.
- c) Which viscoelastic models can be used to describe the experimental results in (a) and (b)?

Problem 2. (12p)

Provide a brief but comprehensive explanation for the following concepts/terms. Use illustrations if possible.

- a) Excluded volume
- b) Lotus effect
- c) Ideal chain
- d) 2D lattice model for binary solutions
- e) Colloid
- f) Capillary length

Problem 3. (7p)

The interaction energy between two surfaces (per unit area) submersed in a liquid is given by DLVO theory as:

$$w(h) = -\frac{A_H}{12\pi h^2} + (64k_B TR\rho_\infty \gamma^2/\kappa)e^{-\kappa h}$$

- a) What interaction(s) does the first term represent? Draw a scheme of the two plates and discuss briefly how this interaction term can be derived. Is this term of entropic or enthalpic origin?
- b) What interaction does the second term represent? Draw a scheme and discuss briefly how this interaction term can be derived. This this term of entropic or enthalpic origin?
- c) Which of the two terms is attractive and which one repulsive in typical simple colloidal dispersions?

PROBLEMS 4 AND 5 ON OTHER SIDE

Problem 4. (8p)

Free energy density of mixing of two polymers A and B is given by

$$f(\phi) = \frac{k_B T}{v_c} \left(\frac{\phi}{N_A} \ln \phi + \frac{1 - \phi}{N_B} \ln (1 - \phi) + \chi \phi (1 - \phi) \right)$$

where NA and NB denote number of monomers in each respective polymer A and B, χ is the Flory-Huggins interaction parameter, v_C is the volume of each monomer, and ϕ is volume fraction of polymer A.

- a) Which terms of the free energy density (given above) are of entropic origin and which ones are of enthalpic origin?
- b) Which terms of the free energy density promote mixing? Why?
- c) How does the entropic contribution to the free energy density change when lengths of the two polymers increase?
- d) What is the physical meaning of the Flory-Huggins interaction parameter? Where does it originate from?
- e) So called spinodal line can be obtained from free energy density as $\partial 2f/\partial \phi 2=0$. Derive this line for the free energy density given above. What is the physical interpretation of the spinodal line?

Problem 5. (7p)

- a) Describe the physical origin of surface tension. Rank the following liquids from low to high surface tension, and motivate using arguments based on the physical origin of surface tension.
 - water at 20°C
 - water at 30°C
 - liquid nitrogen (N₂)
 - · mercury
 - ethanol
- b) Give a mechanical definition of surface tension.
- c) What is the effect of curvature of the water surface on the properties of the liquid?
- d) Consider two planar surfaces with a water drop in between (see figure). The contact angle with the surface is 0° . The surfaces are separated by a distance H = 10 micrometer, and the radius of the capillary bridge is R = 1 cm. Calculate the force between the two surfaces. Is it attractive or repulsive?

