C Programming, exam 16.5.2016

There is a short reference of some standard library functions at the end of the
exam sheet, There are five tasks, of which most have a few subtasks. The total
maximum score is 30 points.

Write your answers on separate papers in the following way: Tasks 1 and 2
should be on one sheet, Tasks 3 and 4 should be on another sheet, and task 5
should be on its own sheet. Mark the task number clearly, and use clear
handwriting. Remember to write your name and student number on each sheet.

1. What does the following program print out? A sufficient answer is one line
that shows the output. (6 p)

L

#include <stdio.h»
#include <string.h>

int main(void)

{
int a = (5 < 7);
int b; for (b = 8; b == 10; b++);
int ¢ = strlen("text");
int d = 1 << 1;
int e = BXACDC & @xPOFF;
int arr[] = {10, 128, 2ee}; int *p = arr; p++; int F = *p;
printf("a: %d, b: ¥d, c: %d, d: ¥d, e: ¥x, f: ¥d\n",
a, b, ¢, d, e, ¥);
}

2. Implement the following functions on the answer sheet.

a) char *mystrcat(char *dest, const char *src) that appends string
src at the end of string dest. The function returns pointer to the beginning of the
combined string. (2p)

b) int *read_numbers(void) that reads positive integers from the user, and
adds each number to the end of a dynamic array. The reading ends when user
gives 0 or a negative value. The function returns a pointer to the beginning of the
dynamically allocated array. (2p)

c)void set_bit(unsigned char *buffer, unsigned int n, int bit)
that goes through n bytes starting from address buffer, and sets the bit number
‘bit’ on in each byte, The most significant bit is number 7, and the least significant
bit is number 0. (2p)

3a) Below is a function that adds a new integer (newval) at the end if linked list
(1}, but the function contains at least two errors. Tell which lines need to be
corrected (or where something would need to be added), and how to correct it.
In the beginning of the list there is an “empty” element that should be ignored
(see graph). Don’t worry about releasing memory: it will be done somewhere
else in the program. You can also assume that memory allocation always
succeeds. (2p)

3 ; 5 15 RESIT A Y
next —— next f————a] next |—— I NULL =5 7% uic

10: #include <stdlib.h>

11:

12: struct list

13: {

14: int val;

is5: struct list *next;

16: };

17:

18: void add_to_list(struct list *1, int newval)
19: {

20: if (!'1) return;

21; while (1->next != NULL)

22: 1=1->next; SIRUCK L1gT
23: 1->next = malloc(sizeof(int));
24: 1->next-»val = newval;

25: 3 {-2a0 sntut= MUl

Valgrind outputs the following when the function is executed:

==18788== Invalid read of size 8

==10788== at ©x498Ce6: add_to_list {tentti.c:21)

==18788== by ©x480FD6: main {(tentti.c:229)

==10788== Address ©x51ba538 is 4 bytes after a block of size 4 alloc'd
==19788== at ©x4C28BED: malloc (vg_replace_malloc.c:263)

==10788== by 8x408C18: add_to_list (tentti.c:23)

==18788== by ©x488FC2: main (tentti.c:228)

==10788==

==18788== Invalid write of size 8

==10788== at ©x400C20: add_to_list (tentti.c:23)

==10788== by ©x400FD6: main (tentti.c:229)

==18788== Address ex51ba538 is 4 bytes after a block of size 4 alloc'd
==10788== at ©x4C28BED: malloc (vg_replace_malloc,.c:263)

==10788== by 9x480C18: add_to_list (tentti.c:23)

==18788== by @x480FC2: main (tentti.c:228)

..in addition there are couple of other similar outputs that have been dropped
because of space constraints.

3b) and c) The following functions are missing some program lines. Choose the
correct lines from the given options. For each missing program line, write the
line number and the letter that represents the right choice.

b) Function that allocates needed amount of memory, and copies string 'src’ to
the allocated space. Function returns pointer to the allocated memory buffer.

(2p)

20: #include <stdlib.h>

21: char *allocopy_str(const char *src)

22: {

23: char *ptr = malloc{strlen(src) + 1);
24: char *origptr =

25; if (ptr) {

26: 722

27 7

28: }

29: *ptr = 9;

29: }

3e: return origptr;

31: }

Line 26 Line 27

i) while {src¢) {
j) while (*src) {
k) while (ptr) {
1) while (*ptr) {

m) ptr = src;

n) *ptr = *src;

0) ptr++ = src++;
p} *ptr++ = *Src+t;

c) Function that gets a string of 8 characters as its parameter. The string consists
of values '1' and '0". The function should return the binary number presented by
the string. For example: "00010001" returns 17 (i.e., 0x11 in hexadecimal

format). (2p)

40: int read_binary(const char *bits)

41: {

42: int val = @;

43: for (int i = 7; i >= 8; i--) {

44: 7

45: ???

46: }

47: return val;

48: }

Line 44 Line 45
q) if (*bits++ == ’1') e val[i] = 1;
r) if (bits++ == '17) val |= 1 & i;

s} if (*bits++ == @x1)
t) if (bits++ == Bx1)

w) wval |= (1 << i);
x) *val += (1 << i);

4. What do the following functions (function_4, function_B, function_C) do? Don't
describe each line, but just give a short, but specific description (1 - 2 sentences)
about the purpose of the function, and what does it return. If the function
outputs something, describe what it shows. (2 points for each function that is
described correctly and specifically)

#include<stdlib.h>
#include<string.h>

unsigned int function_A(const char *a)

{
unsigned int c = 6;
while (*a) {
if (*a == '\n') c++;
a++;
}
return c;
}
int function_B(const char *a)
{
FILE *f = fopen(a, "r");
if (!¥) return -1;
int c;
int d = 9;
while ((c = fgetc(f)) != EOF) {
printf("%e2x ", c);
d++;
if (d % 8 == @)
fputc('\n', stdout);
}
return d;
}

char function_C(char *a)
{
unsigned int c[128] = { @ };
while (*a) {
c[(int)*al++;
at++;
}
unsigned int s = 9;
for (int i = 1; 1 < 128; i++) {
if (c[i] > c[s])
s = 1i;
}

return s;

5. In the following we sketch a program that maintains a registry of vehicles. The
registry is implemented asa linked list, For each vehicle, the registration number
of max. 7 characters is stored, along with the vehicle model description, which is

a free form string. A vehicle is stored in the following structure:

struct vehicle {
char regnrof8];
char *model;
struct vehicle *next;

};

Function add_vehicle adds a new vehicle in the beginning of linked list by
adding two lines of input from the user. On the first line the registration number
(regnro) is given, and on the second line the vehicle model is given.

struct vehicle *add_vehicle(struct vehicle *v)

{
struct vehicle newcar;
newcar-»next = v;
fgets(newcar->regnro, 8, stdin);
scanf("%s", newcar->model) ;
return &newcar;

}

Argument v points to the beginning of linked list, and it can be also NULL, if the
list is empty. The function returns a pointer to the beginning of the list.

a) Implementation of function add_vehicle is not very successful. Rewrite the
function so that it works, but do not change the function call interface (i.e.,
the argument list or return value type). You could think, for example,
whether the function should use dynamic memory somehow. You must not
change the vehicle structure, but you may discuss whether the structure or
function interface could be improved somehow. You can assume that the
needed C-library headers a included elsewhere in the program. (2p)

b) Implement function
char *tell_model(struct vehicle *v, const char *r) that finds
registration number r from the linked list starting from address v, and
returns the model of the vehicle. If the registration number is not found, the
function returns NULL. (2p)

¢) Implement function void delete_all(struct vehicle *y) that removes
the linked list that starts from address v, and releases all memory used by the
list. (2p)

Possibly useful functions

For operating with strings (defined in string.h header]:

size_t strlen{const char *s); Returnslength of string s.

char *strcpy(char *dest, const char *src); copy string src to address
dest

char *strncpy(char *dest, const char *src, size_t n); copyat
most n characters from string sre to string dest. If the string is shorter than n,
the remining bytes are filled with '\0' character.

char *strcat(char *dest, const char *src); concatenates string src
after string dest.

int stremp(const char *s1, const char *s2); returns 0 if the given
strings are same, different than 0 if the two strings differ.

Memeory management (defined in stdlib.h header, memset in string.h):

void *malloc(size_t size); Allocates size bytes of memory, returns
address to the allocated memory block.

void *calloc(size_t nmemb, size_t size); Allocates nmemb times size
bytes of memory, zeroes the allocated memory space

void *realloc(void *ptr, size_t size); Resizes memory block ptr to
have size size, returns pointer to the reallocated memory space

void free(void *ptr); releases the allocated memory space

void *memset(void *s, int c, size_t n); sets each byte in memory
block s with size n to have value ¢,

For handling characters (defined in ctype.h header):

int toupper(int c); convert character to upper case letter

int tolower(int c); convertcharacter to lower case letter

int isalnum({int c¢); isthe character either alphabetical or number?
int isalpha(int c); is the character alphabetical?

int isspace(int c); is the character whitespace?

int islower{int c); is the character a lower case letter?

int isupper{int c); is the character an upper case letter?

Formatted I/0 (defined in stdio.h header):

int printf(const char *format, ...); prints formatted output based on
the given string and parameter list

int scanf(const char *format, ...); readsformatted inputto the given
addresses. Parameters are memory addresses.

char *fgets(char *s, int size, FILE *stream); reads at most size-1
characters from stream and writes the characters to address s.

Format specifiers for printf and scanf functions: Binary numbers
* %d: integer 0x0: 0000 0x8: 1000
* %f: floating point number 0x1: 0001 0x9:1001
* %u: unsigned integer 0x2: 0010 0xA: 1010
* %x: hexadecimal integer 0x3:0011 0xB: 1011
« %c: character 0x4: 0100 0xC: 1100
* %s:string 0x5: 0101 0xD: 1101

0x6: 0110 0xE: 1110
0x7: 0111 0xF: 1111

