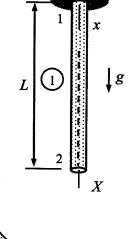
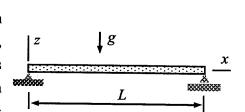

MEC-E1050 Finite Element Method in Solids, exam 21.02.2019


1. Determine displacement u_{Z2} at node 2 of the beam structure shown. Use two beam elements of equal length. Assume that rotation $\theta_{Y2} = 0$. Point force of magnitude F is acting on node 2. Young's modulus of the material E and the second moment of area I are constants.

2. Determine the horizontal and vertical displacements of node 2. Cross-sectional area of bar 1 is $\sqrt{2}A$ and that of bar 2 is A. Young's modulus of the material is E.



3. Consider a bar of length L loaded by its own weight (figure). Determine the displacement u_{X2} at the free end. Start with the virtual work density expression $\delta w_{\Omega} = -\delta (du/dx) EA(du/dx) + \delta u f_x$ and approximation $u = (1 - x/L)u_{x1} + (x/L)u_{x2}$. Cross-sectional area A, acceleration by gravity g, and material properties E and ρ are constants.

2

4. A thin triangular slab of thickness t is loaded by a point force at node 3. Nodes 1 and 2 are fixed. Derive the virtual work expression δW of the structure in terms of u_{X3} and u_{Y3} , and solve for the nodal displacements. Approximation is linear and material parameters E and v are constants. Assume plane-stress conditions.

 \boldsymbol{L}

5. Consider the plate strip shown loaded by its own weight. Thickness, length and width of the plate are t, L, and H, respectively. Density ρ , Young's modulus E, and Poisson's ratio ν are constants. Find an approximation to the transverse displacement w of the plate using series $w = a_0(1-x/L)(x/L)$ (just one term of a series) in which a_0 is an unknown parameter.