MS-E1461 Hilbert spaces (Aalto University) Turunen / Evdoridis

Examination (Monday 21.10.2019, 9:00-12:00)

Points also for good effort! Calculators and literature forbidden. If you need to use some results from the course, please clearly state them.

Remark. In the following, H is an infinite-dimensional **complex** Hilbert space, with inner product $(u, v) \mapsto \langle u, v \rangle$ and norm $u \mapsto ||u|| = \langle u, u \rangle^{1/2}$.

- 1. Formulate and prove the Cauchy–Schwarz inequality in H.
- 2. (a) Show that $u \mapsto \langle u, v \rangle$ is a bounded linear functional, of norm ||v||.
 - (b) What does the Fréchet-Riesz Representation Theorem say?
 - (c) Let $\varphi: H \to \mathbb{C}$ be a bounded linear functional, and let $f(\alpha) := \varphi(e_{\alpha})$, where $(e_{\alpha})_{\alpha \in J}$ is an orthonormal basis of H. Show that $f: J \to \mathbb{C}$ belongs to $\ell^2(J)$, and that $||f|| = ||\varphi||$.
- 3. For $u \in \ell^2 := \ell^2(\mathbb{Z}^+)$ and $N \in \mathbb{Z}^+$, define $P_N u : \mathbb{Z}^+ \to \mathbb{C}$ by

$$P_N u(k) := \begin{cases} u(k) & \text{if } k \leq N, \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Let $P := P_N$. Show that $P \in \mathcal{B}(\ell^2)$ such that $P^2 = P = P^*$ (meaning that P is an orthogonal projection).
- (b) Show that $||P_N u u|| \to 0$ as $N \to \infty$, for all $u \in \ell^2$. Show that $||P_N I|| = 1$ for all $N \in \mathbb{Z}^+$.
- 4. Let $A: H \to H$ be a compact linear operator.
 - (a) Explain why A^*A is a compact positive operator. What does the diagonalization of A^*A mean?
 - (b) Show that A can be presented by

$$Av = \sum_{k=1}^{\infty} \sigma_k \langle v, v_k \rangle u_k$$

for all $v \in H$, where $(u_k)_{k=1}^{\infty}$ and $(v_k)_{k=1}^{\infty}$ are orthonormal sequences, and $\sigma_k \geq \sigma_{k+1} \geq 0$ for all $k \in \mathbb{Z}^+$.

(In other words, construct the Singular Value Decomposition (SVD).)