## MS-E2114 Investment Science

## **Examination 19.12.2018**

Gustafsson

Please write the following information on each answer sheet:

- MS-E2114 Investment Science
- student registration number, surname and all first names
- study programme and year of studies
- signature

A standard calculator is the only permitted aid in this examination.

- 1. Please briefly explain the following concepts:
  - a) Internal rate of return (1p)b) Short selling (1p)

  - c) Jensen's index (1p)
  - d) Delta of an option (1p)
  - e) Minimum variance hedge (1p)
  - f) Geometric Brownian motion (1p)
- 2. Please explain the following topics relating to portfolio theory:
  - a) Objectives of the investor in the Markowitz model (1p)
  - b) Efficient frontier (1p)
  - c) Capital market line (1p)
  - d) Security market line (1p)
- 3. Consider a one-period setting with (i) a risk-free asset with a risk-free interest rate of 2% p.a. and (ii) a non-dividend-paying stock whose price follows a binomial lattice. The lattice starts with an initial state at time 0 and ends with states u and d at time 1 (measured in years). The current price of the stock is 80 euro. In state u, the stock price is multiplied by 1.1 and in state d by 1/1.1. The probability that state u occurs is 75%. The investor can borrow and lend at the risk-free interest rate without limit. Also, the stock can be bought and sold (including short-sold) without limit. Both the risk-free asset and the stock can be bought and sold in fractional quantities.
  - a) What is the forward price of the stock at time 1 (in one year from present)? Justify your answer. (1p)
  - b) Construct a portfolio ("a synthetic security") using the risk-free asset and the stock so that the portfolio yields 1 euro in state u and 0 euro in state d. What is the present value of this portfolio? What are the positions of the risk-free asset and the stock in this portfolio? (1p)
  - c) Construct another such portfolio using the risk-free asset and the stock so that the portfolio yields 0 euro in state u and 1 euro in state d. What is the present value of this portfolio? What are the positions of the risk-free asset and the stock in this portfolio? (1p)
  - d) Consider a European call option on the stock with a strike price of 85 euro and expiration at time 1. Calculate the cash flows of this option in states u and d. (1p)
  - e) Use the synthetic securities in (b) and (c) to determine the present value (price) of the call option. (1p)

- f) What is the replicating portfolio for the call option? What are the positions of the risk-free asset and the stock in this portfolio? (1p)
- 4. Suppose that there are only two stocks in the market portfolio, stocks A and B, which do not pay dividends and which are *uncorrelated* with each other. They have the following characteristics:

| Stock | Number of outstanding shares | Share price | Standard<br>deviation of<br>rate of return |
|-------|------------------------------|-------------|--------------------------------------------|
| A     | 100                          | €5.00       | 20%                                        |
| В     | 200                          | €3.00       | 30%                                        |

The expected rate of return of the market portfolio is 12% and the risk-free interest rate is 2%. Suppose also that the assumptions of the Capital Asset Pricing Model (CAPM) hold.

- a) Determine the betas for stocks A and B. (2p)
- b) Determine the expected rates of return for stocks A and B. (1p)

Consider 1-year European call and put options on stock A as a function of strike price *K*. <u>Justify</u> your answers.

- c) Does the price of a call option increase or decrease as K increases? (0.5p)
- d) Does the price of a put option increase or decrease as K increases? (0.5p)
- e) What is the price of a call when K = 0? Note that the stock does not pay dividends. (0.5p)
- f) What is the price of a put when K = 0? (0.5p)
- g) What is the limit value of the price of a call as K approaches infinity? (0.5p)
- h) What is the limit value of the price of a put as K approaches infinity? (0.5p)
- i) Determine the strike price  $K^*$  at which a 1-year European call option and a 1-year European put option on stock A have exactly the same price. (2p)
- 5. A company has three liabilities whose maturities are 1, 2, and 4 years. The liabilities and respective spot rates (using annual compounding) are as follows:

| Year                  | 1  | 2  | 3              | 4  |
|-----------------------|----|----|----------------|----|
| Liability (million €) | 1  | 1  | Let to some he | 3  |
| Spot rate             | 2% | 3% | 3%             | 4% |

- a) Determine the present value and duration of the liabilities. (2p)
- b) The company seeks protection from possible parallel shifts in spot rates by investing in an immunizing portfolio consisting of bonds A and B. Bond A has a coupon rate of 1%, matures in 2 years, and pays coupons annually. Bond B is a zero-coupon bond with maturity in 4 years. How much must the company invest in bonds A and B, respectively? (4p)