COURSE EXAM, MATRIX ALGEBRA, MS-A0011

- Time: 29.5.2019, 16:30-19:30
- Equipment: None
- Answer each problem on a separate page. Each problem is worth 4 points.
- Motivate all solutions carefully. Answers without motivation give no points.
- Good luck, have fun! /Ragnar

Problem 1

Let A and B be two invertible $n \times n$ matrices, and let $\mathbf{v} \in \mathbb{R}^{n}$ be a vector that is an eigenvector of both A and B. For each of the statements below, write if they are necessarily true, necessarily false, or if they can be either true or false.
a) $A B$ is invertible.
b) $A+B$ is invertible.
c) \mathbf{v} is an eigenvector of $A B$.
d) \mathbf{v} is an eigenvector of $A+B$.

Problem 2

Diagonalize the matrix $\left(\begin{array}{ccc}2 & 2 & 1 \\ 2 & -1 & -2 \\ 1 & -2 & 2\end{array}\right)$.

Problem 3

Let

$$
V=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)\right\}
$$

and let $F(\mathbf{x})$ be the point on V that is closest to \mathbf{x}, for $\mathbf{x} \in \mathbb{R}^{4}$. Determine the transformation matrix of F.

Problem 4

Consider three points in Euclidean 3-dimensional space, with coordinates as follows:

$$
P_{1}:(1,-1,1), P_{2}:(-1,2,2), P_{3}:(2,1,-1)
$$

Compute the area of the triangle that has corners in P_{1}, P_{2}, and P_{3}.

Problem 5

Compute an orthonormal basis for

$$
\operatorname{Span}\left\{\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right),\left(\begin{array}{c}
2 \\
-4 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right),\left(\begin{array}{c}
1 \\
-4 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
4 \\
4
\end{array}\right)\right\} .
$$

