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1. For each of the following statements, state if it is correct or not. Justify your answer.

(a) The following equations have all their roots inside the unit disc:

(i) z2 − 1.5z + 0.9 = 0 [2p]

(ii) z3 − 2z2 + 2z − 0.5 = 0 [3p]

(b) Consider the system with the following characteristic equation:

χ(z) = z2 − βz − 0.5, β ≥ 0.

The system is stable for 0 ≤ β < 0.5. [2p]

(c) Consider the following system

x[k + 1] = Φx[k] + Γu[k]

y[k] = Cx[k]

with

Φ =

[
0.5 −0.5
0 0.25

]
,Γ =

[
6
4

]
and C =

[
2 −4

]
.

The system is observable and reachable. [2p]

(d) The Nyquist plot for H(z) = 0.4
(z−0.2)(z−0.5) is:

Example

• A discrete process (h=1) is controlled with a proportional controller, which has 
gain K, as shown below

K
YREF(z) Y(z)

H(z)
X

+
-

H(z) =
0.4

(z � 0.5)(z � 0.2)

• The discrete Nyquist diagram is constructed with MATLAB
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>> sysd=zpk([ ],[0.2 0.5],0.4,1);  
>> nyquist(sysd)

• By zooming in at the intersection wit the real 
axis, the point is approximately -0.4416-0.4416

• The magnitude can thus be multiplied with 
(1/0.4416) to reach the critical point -1

• The controlled system is stable when

K <
1

0.4416
⇡ 2.26

The value of the gain K for which the system is stable is K > 1/0.4416. [2p]

(e) When discretizing a continuous-time system with poles λ1, λ2, . . . , λn, with |λmax| ,
maxi |λi|, using the state-space representation with sampling h and zero-order hold
(ZOH), then the stability of the analog system is preserved and if h < π/|λmax| there is
no aliasing. [2p]

(f) A discrete-time LTI system is reachable if it is possible to find a control sequence such
that any state can be reached from any initial state in finite time. [2p]



Solution.

(a) (i) True. This can be shown with 3 different ways:
1st way: Using the quadratic formula.

z1,2 =
1.5±

√
(−1.5)2 − 4(0.9)

2
= 0.75±

√
−1.35

2
= 0.75± 0.58i

⇒ |z1,2|2 = 0.752 +
1.35

4
= 0.9 < 1⇒ |z1,2| < 1.

2nd way: Checking if the conditions of the triangle rule hold.

∗ a2 = 0.9 < 1 X
∗ a2 = 0.9 > 1.5− 1 = 0.5 = −a1 − 1 X
∗ a2 = 0.9 > −1.5− 1 = −2.5 = a1 − 1 X

3rd way: Using Jury’s stability criterion.

1 −1.5 0.9
0.9 −1.5 1

0.19 −0.15

−0.15 0.19

0.07

bn = 0.9
1 = 0.9

bn−1 = −0.15
0.19 = −0.79

(ii) False. The most convenient way is to use the Jury’s stability criterion.

1 −2 2 −0.5
−0.5 2 −2 1

0.75 −1 1

1 −1 0.75

−0.58 0.33

0, 33 −0.58

−0.39

bn = −0.5
1 = −0.5

bn−1 = 1
0.75 = 1.3333

bn−2 = 0.33
−0.58 = −0.57

(b) True. There are 2 ways to do this.

1st way: Using the triangle rule.

• −0.5 < 1 X

• −0.5 > β − 1⇒ β < 0.5

• −0.5 > −β − 1⇒ β > −0.5, which holds anyway since β ≥ 0.
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2nd way: Using the quadratic formula.

z1,2 =
β ±

√
β2 − 4(−0.5)

2
=
β ±

√
β2 + 2

2

Then, since the poles are both real, we have 2 cases: the smallest pole should be bigger
than −1 and the biggest pole should be smaller than 1.

β −
√
β2 + 2

2
> −1⇒ β + 2 >

√
β2 + 2⇒ β > −1

2
.

β +
√
β2 + 2

2
< 1⇒ 2− β >

√
β2 + 2.

To be able to proceed with this inequality and given that the RHS is positive, we need
that 2− β > 0, i.e., β < 2. Given that β < 2, we get

(2− β)2 > β2 + 2⇒ β < 0.5.

Therefore, we need 0 ≤ β < 0.5.

(c) False. The system is reachable, but not observable.

• The controllability matrix is

Wc =
[
Γ ΦΓ

]
=

[
6 1
4 1

]
.

det(Wc) = 2 6= 0 and, hence, the system is reachable.

• The observability matrix is

Wo =

[
C
CΦ

]
=

[
2 −4
1 −2

]
.

det(Wo) = 0 and, hence, the system is not observable.

(d) False. There are 2 ways given for this.

1st way: The open loop system is stable (p1 = 0.2 and p2 = 0.5). Thus the closed loop
system is stable if the Nyquist plot does not encircle the point −1. From the plot we see
that:

K(−0.4416) > −1⇒ K <
1

0.4416
.

So, the statement is false.

2nd way: Using the triangle rule. The closed-loop transfer function T (z) is given by

T (z) =
KH(z)

1 +KH(z)
=

0.4K

(z − 0.2)(z − 0.5) + 0.4K
.



The characteristic equation is therefore:

χ(z) = (z − 0.2)(z − 0.5) + 0.4K = z2−0.7︸︷︷︸
a1

z + 0.1 + 0.4K︸ ︷︷ ︸
a2

.

Using the triangle rule.

• −1 < 0.1 + 0.4K < 1⇒ −2.75 < K < 2.25

• −0.7− 1 < 0.1 + 0.4K ⇒ −4.5 < K

• 0.7− 1 < 0.1 + 0.4K ⇒ −1 < K.

Therefore, the system is stable for −1 < K < 2.25; so, the statement is false.

(e) True. The poles of continuous-time systems are mapped to discrete through

pi = eλih, where λi = σi + jωi

Therefore,

pi = eλih = e(σi+jωi)h = eσihejωih

Regarding stability,

|pi| = |eλih| = |eσihejωih| = eσih < 1, if and only if σi < 0.

Regarding aliasing, from the Nyquist criterion, there is no aliasing if

ωs =
2π

h
> 2ω0 ⇒ h <

π

ω0
.

If the imaginary part of a pole of the continuous-time system is bigger than π/h then
the frequency response has a peak at a higher frequency than the cut-off frequency ω0

in the discrete-time domain, i.e.,

ωih < π ⇒ ωi ≤ ω0.

Therefore, since
|λmax| = |σmax + jωmax| ≥ |ωmax|,

then if |λmax| ≤ ω0, then there will be no aliasing.

(f) True. By definition.
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2. Consider the feedback system

R(z) Y (z)
K(z) P (z)Σ

+

−

E(z) U(z)

where

P (z) =
1

z2 + z + 0.9

and K is a constant.

a) Draw the pole/zero diagram (z-plane) for the open-loop system P (z). Is the system
stable? [3p]

b) Find the closed-loop transfer function from R(z) to Y (z) as a function of K(z). [3p]

c) For which values of K(z) = K (K is a constant value) is the closed-loop stable? [3p]

d) Consider the closed-loop system and let the input r[k] be a unit step. Find, as a function
of gain K(z) = K, the steady-state value of y[k] (i.e., the limk→∞ y[k]) when this is finite,
stating for which values of K the answer is valid. [3p]

e) Let

K = − 1

10

z − 0.5

z + 0.5
.

The figure below shows three Bode plots (A, B and C), but only one corresponds to
K(z)P (z).

A B C

Choose the correct one, justifying your answer. [3p]



Solution.

a) The open loop system has two poles:

p12 =
−1±

√
1− 4(0.9)

2
=
−1±

√
−2.6

2
= −0.5± j0.8062.

The magnitude of the poles is

|p12| =

√(
−1

2

)2

+

(√−2.6

2

)2

=

√
1

4
+

2.6

4
=

√
3.6

4
=
√

0.9 < 1.

Hence, the poles are within the unit circle.

b) From the block diagram:

R(z) Y (z)
K(z) P (z)Σ

+

−

E(z) U(z)

we have that

E(z) = R(z)− Y (z)

= R(z)− P (z)U(z)︸ ︷︷ ︸
Y (z)

= R(z)− P (z)K(z)E(z)︸ ︷︷ ︸
U(z)

.

Therefore,

E(z) =
R(z)

1 + P (z)K(z)
.
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Multiplying both sides with P (z)K(z) we get

P (z)K(z)E(z)︸ ︷︷ ︸
Y (z)

=
P (z)K(z)R(z)

1 + P (z)K(z)
⇒ H(z) ,

Y (z)

R(z)
=

P (z)K(z)

1 + P (z)K(z)

Therefore, the closed loop transfer function is given by

H(z) =

K(z)
z2+z+0.9

1 + K(z)
z2+z+0.9

=
K(z)

z2 + z + 0.9 +K(z)

c) The closed loop poles are the roots of z2 + z + 0.9 + K = 0. Therefore, invoking the
triangle rule we get:





0.9 +K < 1⇒ K < 0.1

0.9 +K > −1− 1⇒ K > −2.9

0.9 +K > 1− 1⇒ K > −0.9

Combining all, we get −0.9 < K < 0.1.

d) When K /∈ (−0.9, 0.1) the system is unstable and, hence, y[k] will grow unbounded.
When K ∈ (−0.9, 0.1), the closed loop system is stable and we use the final value
theorem (using the closed loop transfer function H(z) we found in part (b)):

y∞ , lim
k→∞

y[k] = lim
z→1

(z − 1)H(z)U(z)

= lim
z→1

(z − 1)
K(z)

z2 + z + 0.9 +K(z)

z

z − 1

=
K

2.9 +K

e) – At z = −1, P (1)K(1) = −0.0115 and therefore the phase must be −180o. Therefore,
C cannot be the one.

– Evaluating P (z)K(z) at z = ej2.1, we get |P (ej2.1)K(ej2.1)| = 1.6. Therefore, A
cannot be the one.

Thus the correct one is B.



3. A DC motor can be described by a second-order model with one time constant and one
integrator; a normalized model of the motor is depicted in the simple block diagram below.
Input U(s) is the input voltage and output Y (s) the shaft position.

Y (s)
1

s+1
1
s

U(s)

SpeedVoltage Position

x1 x2

a) Show that the state-space representation of the system (by using the state variables x1
and x2 in the figure) is given by [3p]

ẋ(t) =

[
−1 0
1 0

]
x(t) +

[
1
0

]
u(t)

y(t) =
[
0 1

]
x(t)

b) Sample the state-space model with sampling time h, assuming ZOH and determine the
discrete state-space representation of the form: [3p]

x(kh+ h) = Φ(h)x(kh) + Γ(h)u(kh)

y(kh) = Cx(kh) +Du(kh)

c) Find the pulse transfer function of the discrete-time representation. [3p]

d) Determine the deadbeat controller of the motor. [3p]

e) Assume that x(0) =
[
1 0

]T
. Determine the sample interval such that the control signal

u(kh) is less than 1 in magnitude. It can be assumed that the maximum value of u(kh)
is at k = 0. [3p]

Solution.

a) 1st way: From the block diagram, it is clear that y(t) = x2(t) and since the signal x1(t)
passes through the integrator block (1/s) we conclude that x2(t) = ẋ1(t). Hence, we
have

y(t) = x2(t)⇒ Y (s) = X2(s),

ẏ(t) = ẋ2(t) = x1(t)⇒ sY (s) = sX2(s) = X1(s),

ÿ(t) = ẋ1(t)⇒ s2Y (s) = sX1(s)

The transfer function between the input and output is found by

H(s) =
Y (s)

U(s)
=

1

s+ 1

1

s
=

1

s2 + s
, (1)

so we have

s2Y (s) + sY (s) = U(s)⇒ sX1(s) +X1(s) = U(s)⇒ ẋ1(t) = −x1(t) + u(t).
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Hence, the state-space representation of the system with states x1(t) and x2(t) can be
described as

[
ẋ1(t)
ẋ2(t)

]
=

[
−1 0
1 0

] [
x1(t)
x2(t)

]
+

[
1
0

]
u(t)

y(t) =
[
0 1

] [x1(t)
x2(t)

]

2nd way: Define the state vector as x =

[
x1
x2

]
. From the diagram, it is easily shown

that y(t) = x2(t). Hence, y(t) =
[
0 1

]
x. The transfer function between the input and

output is found by

H(s) =
Y (s)

U(s)
=

1

s+ 1

1

s
=

1

s2 + s
. (2)

The system can be written in controllable canonical form from the TF with coefficients:
b1 = 0, b2 = 1, a1 = 1, a2 = 0. Therefore,

ẋ(t) =

[
−a1 −a2

1 0

]
x(t) +

[
1
0

]
u(t) =

[
−1 −0
1 0

]
x(t) +

[
1
0

]
u(t),

which is the given system.

b) Assuming ZOH and sampling time h, matrices Φ(h) and Γ(h) are found to be

Φ(h) = eAh = L−1{(sI −A)−1}|t=h = L−1
{[

1
s+1 0
1

s(s+1)
1
s

]}∣∣∣∣∣
t=h

=

[
e−h 0

1− e−h 1

]

Γ(h) =

∫ h

0
eAsdsB =

∫ h

0

[
e−s 0

1− e−s 1

]
ds

[
1
0

]
=

∫ h

0

[
e−s

1− e−s
]
ds =

[
1− e−h

h+ e−h − 1

]

c) The discrete-time transfer function from discrete-time state-space representation is given
by

G(z) = C(zI − Φ)−1Γ +D

=
[
0 1

](
zI −

[
e−h 0

1− e−h 1

])−1 [
1− e−h

h+ e−h − 1

]

=
[
0 1

] [ z − e−h 0
−1 + e−h z − 1

]−1 [
1− e−h

h+ e−h − 1

]

=
1

(z − 1)(z − e−h)

[
0 1

] [ z − 1 0
1− e−h z − e−h

] [
1− e−h

h+ e−h − 1

]

=
1

(z − 1)(z − e−h)

[
1− e−h z − e−h

] [ 1− e−h
h+ e−h − 1

]

=
(1− e−h)2 + (z − e−h)(h+ e−h − 1)

(z − 1)(z − e−h)



d) The system under consideration:

x[k + 1] =

[
e−h 0

1− e−h 1

]
x[k]−

[
1− e−h

h+ e−h − 1

] [
l1 l2

]
x[k]

=

[
e−h 0

1− e−h 1

]
x[k]−

[
(1− e−h)l1 (1− e−h)l2

(h+ e−h − 1)l1 (h+ e−h − 1)l2

]
x[k]

=

[
e−h − (1− e−h)l1 −(1− e−h)l2

1− e−h − (h+ e−h − 1)l1 1− (h+ e−h − 1)l2

]
x[k]

The corresponding characteristic polynomial is:

χ(z) = det(zI − Φ + ΓL)

=

∣∣∣∣
z − e−h + (1− e−h)l1 (1− e−h)l2

−1 + e−h + (h+ e−h − 1)l1 z − 1 + (h+ e−h − 1)l2

∣∣∣∣

Let a := e−h and b := h+ e−h − 1. Then, χ(z) can be simplified to

χ(z) =

∣∣∣∣
z − a+ (1− a)l1 (1− a)l2
−1 + a+ bl1 z − 1 + bl2

∣∣∣∣

= (z − a+ (1− a)l1)(z − 1 + bl2)− (1− a)l2(−1 + a+ bl1)

= z2 + z[(−1 + bl2) + (−a+ (1− a)l1)]

+ (−a+ (1− a)l1)(−1 + bl2)− (1− a)l2(−1 + a+ bl1)

Since we want a deadbeat control, the determinant should be equal to z2 (i.e., the poles
are equal to zero). Therefore,

{
(−a+ (1− a)l1)(−1 + bl2)− (1− a)l2(−1 + a+ bl1) = 0

(−1 + bl2) + (−a+ (1− a)l1) = 0

from which l1 and l2 can be extracted. After algebraic manipulation
{
−(1− a)l1 − abl2 + (1− a)2l2 = −a
(1− a)l1 + bl2 = 1 + a

(3)

Adding the two equations we get

bl2 − abl2 + (1− a)2l2 = 1⇒ (1− a)bl2 + (1− a)2l2 = 1

⇒ (1− a)(b+ 1− a)l2 = 1

⇒ (1− a)hl2 = 1 (note: b = h+ a− 1)

⇒ l2 =
1

h
(
1− e−h

)

Substituting l2 back in (3), we get

(1− a)l1 +
b

h(1− a)
= 1 + a⇒ l1 =

1

1− a

(
1 + a− b

h(1− a)

)



e) In this case,

u[0] =
[
l1 l2

]
x[0] = l1.

Since we want u[0] < 1 we should choose h such that l1 < 1. Therefore, from part (b)
we get

1

1− a

(
1 + a− b

h(1− a)

)
< 1⇒ 1− a > 1 + a− b

h(1− a)

⇒ b

h(1− a)
> 2a

⇒ h+ e−h − 1 > 2he−h(1− e−h)

An h should be chosen such that the inequality above is satisfied.


