1. For each of the following statements, state if it is correct or not. Justify your answer.
(a) The following equations have all their roots inside the unit disc:
(i) $z^{2}-1.5 z+0.9=0$
(ii) $z^{3}-2 z^{2}+2 z-0.5=0$
(b) Consider the system with the following characteristic equation:

$$
\begin{equation*}
\chi(z)=z^{2}-\beta z-0.5, \quad \beta \geq 0 \tag{2p}
\end{equation*}
$$

The system is stable for $0 \leq \beta<0.5$.
(c) Consider the following system

$$
\begin{aligned}
\mathbf{x}[k+1] & =\Phi \mathbf{x}[k]+\Gamma u[k] \\
y[k] & =C \mathbf{x}[k]
\end{aligned}
$$

with

$$
\Phi=\left[\begin{array}{cc}
0.5 & -0.5 \tag{2p}\\
0 & 0.25
\end{array}\right], \Gamma=\left[\begin{array}{l}
6 \\
4
\end{array}\right] \text { and } C=\left[\begin{array}{ll}
2 & -4
\end{array}\right] .
$$

The system is observable and reachable.
(d) The Nyquist plot for $H(z)=\frac{0.4}{(z-0.2)(z-0.5)}$ is:

The value of the gain K for which the system is stable is $K>1 / 0.4416$.
(e) When discretizing a continuous-time system with poles $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, with $\left|\lambda_{\max }\right| \triangleq$ $\max _{i}\left|\lambda_{i}\right|$, using the state-space representation with sampling h and zero-order hold (ZOH), then the stability of the analog system is preserved and if $h<\pi /\left|\lambda_{\max }\right|$ there is no aliasing.
(f) A discrete-time LTI system is reachable if it is possible to find a control sequence such that any state can be reached from any initial state in finite time.

Solution.

(a) (i) True. This can be shown with 3 different ways: 1st way: Using the quadratic formula.

$$
\begin{aligned}
z_{1,2} & =\frac{1.5 \pm \sqrt{(-1.5)^{2}-4(0.9)}}{2}=0.75 \pm \frac{\sqrt{-1.35}}{2}=0.75 \pm 0.58 i \\
\Rightarrow\left|z_{1,2}\right|^{2} & =0.75^{2}+\frac{1.35}{4}=0.9<1 \Rightarrow\left|z_{1,2}\right|<1
\end{aligned}
$$

2nd way: Checking if the conditions of the triangle rule hold.

* $a_{2}=0.9<1 \checkmark$
* $a_{2}=0.9>1.5-1=0.5=-a_{1}-1 \checkmark$
* $a_{2}=0.9>-1.5-1=-2.5=a_{1}-1 \checkmark$

3rd way: Using Jury's stability criterion.

$$
\begin{array}{lll}
\begin{array}{|cc}
1 & -1.5 \\
0.9 & -1.5
\end{array} 1
\end{array} \quad b_{n}=\frac{0.9}{1}=0.9
$$

(ii) False. The most convenient way is to use the Jury's stability criterion.

$$
\begin{array}{cccc}
\begin{array}{c}
1 \\
-0.5
\end{array} & -2 & 2 & -0.5 \\
2 & -2 & 1
\end{array} \quad b_{n}=\frac{-0.5}{1}=-0.5
$$

(b) True. There are 2 ways to do this.

1st way: Using the triangle rule.

- $-0.5<1 \checkmark$
- $-0.5>\beta-1 \Rightarrow \beta<0.5$
- $-0.5>-\beta-1 \Rightarrow \beta>-0.5$, which holds anyway since $\beta \geq 0$.

2nd way: Using the quadratic formula.

$$
z_{1,2}=\frac{\beta \pm \sqrt{\beta^{2}-4(-0.5)}}{2}=\frac{\beta \pm \sqrt{\beta^{2}+2}}{2}
$$

Then, since the poles are both real, we have 2 cases: the smallest pole should be bigger than -1 and the biggest pole should be smaller than 1.

$$
\begin{gathered}
\frac{\beta-\sqrt{\beta^{2}+2}}{2}>-1 \Rightarrow \beta+2>\sqrt{\beta^{2}+2} \Rightarrow \beta>-\frac{1}{2} \\
\frac{\beta+\sqrt{\beta^{2}+2}}{2}<1 \Rightarrow 2-\beta>\sqrt{\beta^{2}+2}
\end{gathered}
$$

To be able to proceed with this inequality and given that the RHS is positive, we need that $2-\beta>0$, i.e., $\beta<2$. Given that $\beta<2$, we get

$$
(2-\beta)^{2}>\beta^{2}+2 \Rightarrow \beta<0.5
$$

Therefore, we need $0 \leq \beta<0.5$.
(c) False. The system is reachable, but not observable.

- The controllability matrix is

$$
W_{c}=\left[\begin{array}{ll}
\Gamma & \Phi \Gamma
\end{array}\right]=\left[\begin{array}{ll}
6 & 1 \\
4 & 1
\end{array}\right]
$$

$\operatorname{det}\left(W_{c}\right)=2 \neq 0$ and, hence, the system is reachable.

- The observability matrix is

$$
W_{o}=\left[\begin{array}{c}
C \\
C \Phi
\end{array}\right]=\left[\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right]
$$

$\operatorname{det}\left(W_{o}\right)=0$ and, hence, the system is not observable.
(d) False. There are 2 ways given for this.

1 st way: The open loop system is stable ($p_{1}=0.2$ and $p_{2}=0.5$). Thus the closed loop system is stable if the Nyquist plot does not encircle the point -1 . From the plot we see that:

$$
K(-0.4416)>-1 \Rightarrow K<\frac{1}{0.4416}
$$

So, the statement is false.
2nd way: Using the triangle rule. The closed-loop transfer function $T(z)$ is given by

$$
T(z)=\frac{K H(z)}{1+K H(z)}=\frac{0.4 K}{(z-0.2)(z-0.5)+0.4 K}
$$

The characteristic equation is therefore:

$$
\chi(z)=(z-0.2)(z-0.5)+0.4 K=z^{2} \underbrace{-0.7}_{a_{1}} z+\underbrace{0.1+0.4 K}_{a_{2}} .
$$

Using the triangle rule.

- $-1<0.1+0.4 K<1 \Rightarrow-2.75<K<2.25$
- $-0.7-1<0.1+0.4 K \Rightarrow-4.5<K$
- $0.7-1<0.1+0.4 K \Rightarrow-1<K$.

Therefore, the system is stable for $-1<K<2.25$; so, the statement is false.
(e) True. The poles of continuous-time systems are mapped to discrete through

$$
p_{i}=e^{\lambda_{i} h}, \text { where } \lambda_{i}=\sigma_{i}+j \omega_{i}
$$

Therefore,

$$
p_{i}=e^{\lambda_{i} h}=e^{\left(\sigma_{i}+j \omega_{i}\right) h}=e^{\sigma_{i} h} e^{j \omega_{i} h}
$$

Regarding stability,

$$
\left|p_{i}\right|=\left|e^{\lambda_{i} h}\right|=\left|e^{\sigma_{i} h} e^{j \omega_{i} h}\right|=e^{\sigma_{i} h}<1, \text { if and only if } \sigma_{i}<0 .
$$

Regarding aliasing, from the Nyquist criterion, there is no aliasing if

$$
\omega_{s}=\frac{2 \pi}{h}>2 \omega_{0} \Rightarrow h<\frac{\pi}{\omega_{0}} .
$$

If the imaginary part of a pole of the continuous-time system is bigger than π / h then the frequency response has a peak at a higher frequency than the cut-off frequency ω_{0} in the discrete-time domain, i.e.,

$$
\omega_{i} h<\pi \Rightarrow \omega_{i} \leq \omega_{0}
$$

Therefore, since

$$
\left|\lambda_{\max }\right|=\left|\sigma_{\max }+j \omega_{\max }\right| \geq\left|\omega_{\max }\right|
$$

then if $\left|\lambda_{\max }\right| \leq \omega_{0}$, then there will be no aliasing.
(f) True. By definition.
2. Consider the feedback system

where

$$
P(z)=\frac{1}{z^{2}+z+0.9}
$$

and K is a constant.
a) Draw the pole/zero diagram (z-plane) for the open-loop system $P(z)$. Is the system stable?
b) Find the closed-loop transfer function from $R(z)$ to $Y(z)$ as a function of $K(z)$.
c) For which values of $K(z)=K$ (K is a constant value) is the closed-loop stable?
d) Consider the closed-loop system and let the input $r[k]$ be a unit step. Find, as a function of gain $K(z)=K$, the steady-state value of $y[k]$ (i.e., the $\lim _{k \rightarrow \infty} y[k]$) when this is finite, stating for which values of K the answer is valid.
e) Let

$$
K=-\frac{1}{10} \frac{z-0.5}{z+0.5}
$$

The figure below shows three Bode plots (A, B and C), but only one corresponds to $K(z) P(z)$.

Choose the correct one, justifying your answer.

Solution.

a) The open loop system has two poles:

$$
p_{12}=\frac{-1 \pm \sqrt{1-4(0.9)}}{2}=\frac{-1 \pm \sqrt{-2.6}}{2}=-0.5 \pm j 0.8062 .
$$

The magnitude of the poles is

$$
\left|p_{12}\right|=\sqrt{\left(-\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{-2.6}}{2}\right)^{2}}=\sqrt{\frac{1}{4}+\frac{2.6}{4}}=\sqrt{\frac{3.6}{4}}=\sqrt{0.9}<1 .
$$

Hence, the poles are within the unit circle.

b) From the block diagram:

we have that

$$
\begin{aligned}
E(z) & =R(z)-Y(z) \\
& =R(z)-\underbrace{P(z) U(z)}_{Y(z)} \\
& =R(z)-P(z) \underbrace{K(z) E(z)}_{U(z)} .
\end{aligned}
$$

Therefore,

$$
E(z)=\frac{R(z)}{1+P(z) K(z)} .
$$

Multiplying both sides with $P(z) K(z)$ we get

$$
\underbrace{P(z) K(z) E(z)}_{Y(z)}=\frac{P(z) K(z) R(z)}{1+P(z) K(z)} \Rightarrow H(z) \triangleq \frac{Y(z)}{R(z)}=\frac{P(z) K(z)}{1+P(z) K(z)}
$$

Therefore, the closed loop transfer function is given by

$$
H(z)=\frac{\frac{K(z)}{z^{2}+z+0.9}}{1+\frac{K(z)}{z^{2}+z+0.9}}=\frac{K(z)}{z^{2}+z+0.9+K(z)}
$$

c) The closed loop poles are the roots of $z^{2}+z+0.9+K=0$. Therefore, invoking the triangle rule we get:

$$
\left\{\begin{array}{l}
0.9+K<1 \Rightarrow K<0.1 \\
0.9+K>-1-1 \Rightarrow K>-2.9 \\
0.9+K>1-1 \Rightarrow K>-0.9
\end{array}\right.
$$

Combining all, we get $-0.9<K<0.1$.
d) When $K \notin(-0.9,0.1)$ the system is unstable and, hence, $y[k]$ will grow unbounded. When $K \in(-0.9,0.1)$, the closed loop system is stable and we use the final value theorem (using the closed loop transfer function $H(z)$ we found in part (b)):

$$
\begin{aligned}
y_{\infty} & \triangleq \lim _{k \rightarrow \infty} y[k]=\lim _{z \rightarrow 1}(z-1) H(z) U(z) \\
& =\lim _{z \rightarrow 1}(z-1) \frac{K(z)}{z^{2}+z+0.9+K(z)} \frac{z}{z-1} \\
& =\frac{K}{2.9+K}
\end{aligned}
$$

e) - At $z=-1, P(1) K(1)=-0.0115$ and therefore the phase must be -180°. Therefore, C cannot be the one.

- Evaluating $P(z) K(z)$ at $z=e^{j 2.1}$, we get $\left|P\left(e^{j 2.1}\right) K\left(e^{j 2.1}\right)\right|=1.6$. Therefore, A cannot be the one.
Thus the correct one is B .

3. A DC motor can be described by a second-order model with one time constant and one integrator; a normalized model of the motor is depicted in the simple block diagram below. Input $U(s)$ is the input voltage and output $Y(s)$ the shaft position.

a) Show that the state-space representation of the system (by using the state variables x_{1} and x_{2} in the figure) is given by

$$
\begin{aligned}
& \dot{\mathbf{x}}(t)=\left[\begin{array}{cc}
-1 & 0 \\
1 & 0
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \mathbf{x}(t)
\end{aligned}
$$

b) Sample the state-space model with sampling time h, assuming ZOH and determine the discrete state-space representation of the form:

$$
\begin{aligned}
\mathbf{x}(k h+h) & =\Phi(h) \mathbf{x}(k h)+\Gamma(h) \mathbf{u}(k h) \\
\mathbf{y}(k h) & =C \mathbf{x}(k h)+D \mathbf{u}(k h)
\end{aligned}
$$

c) Find the pulse transfer function of the discrete-time representation.
d) Determine the deadbeat controller of the motor.
e) Assume that $\mathbf{x}(0)=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$. Determine the sample interval such that the control signal $\mathbf{u}(k h)$ is less than 1 in magnitude. It can be assumed that the maximum value of $\mathbf{u}(k h)$ is at $k=0$.

Solution.

a) 1st way: From the block diagram, it is clear that $y(t)=x_{2}(t)$ and since the signal $x_{1}(t)$ passes through the integrator block $(1 / s)$ we conclude that $x_{2}(t)=\dot{x}_{1}(t)$. Hence, we have

$$
\begin{aligned}
& y(t)=x_{2}(t) \Rightarrow Y(s)=X_{2}(s), \\
& \dot{y}(t)=\dot{x}_{2}(t)=x_{1}(t) \Rightarrow s Y(s)=s X_{2}(s)=X_{1}(s), \\
& \ddot{y}(t)=\dot{x}_{1}(t) \Rightarrow s^{2} Y(s)=s X_{1}(s)
\end{aligned}
$$

The transfer function between the input and output is found by

$$
\begin{equation*}
H(s)=\frac{Y(s)}{U(s)}=\frac{1}{s+1} \frac{1}{s}=\frac{1}{s^{2}+s}, \tag{1}
\end{equation*}
$$

so we have

$$
s^{2} Y(s)+s Y(s)=U(s) \Rightarrow s X_{1}(s)+X_{1}(s)=U(s) \Rightarrow \dot{x}_{1}(t)=-x_{1}(t)+u(t) .
$$

Hence, the state-space representation of the system with states $x_{1}(t)$ and $x_{2}(t)$ can be described as

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right] } & =\left[\begin{array}{cc}
-1 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u(t) \\
y(t) & =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
\end{aligned}
$$

2nd way: Define the state vector as $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$. From the diagram, it is easily shown that $y(t)=x_{2}(t)$. Hence, $y(t)=\left[\begin{array}{ll}0 & 1\end{array}\right] x$. The transfer function between the input and output is found by

$$
\begin{equation*}
H(s)=\frac{Y(s)}{U(s)}=\frac{1}{s+1} \frac{1}{s}=\frac{1}{s^{2}+s} . \tag{2}
\end{equation*}
$$

The system can be written in controllable canonical form from the TF with coefficients: $b_{1}=0, b_{2}=1, a_{1}=1, a_{2}=0$. Therefore,

$$
\dot{x}(t)=\left[\begin{array}{cc}
-a_{1} & -a_{2} \\
1 & 0
\end{array}\right] x(t)+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u(t)=\left[\begin{array}{cc}
-1 & -0 \\
1 & 0
\end{array}\right] x(t)+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u(t),
$$

which is the given system.
b) Assuming ZOH and sampling time h, matrices $\Phi(h)$ and $\Gamma(h)$ are found to be

$$
\begin{aligned}
& \Phi(h)=e^{A h}=\left.\mathcal{L}^{-1}\left\{(s I-A)^{-1}\right\}\right|_{t=h}=\left.\mathcal{L}^{-1}\left\{\left[\begin{array}{cc}
\frac{1}{s+1} & 0 \\
\frac{1}{s(s+1)} & \frac{1}{s}
\end{array}\right]\right\}\right|_{t=h}=\left[\begin{array}{cc}
e^{-h} & 0 \\
1-e^{-h} & 1
\end{array}\right] \\
& \Gamma(h)=\int_{0}^{h} e^{A s} d s B=\int_{0}^{h}\left[\begin{array}{cc}
e^{-s} & 0 \\
1-e^{-s} & 1
\end{array}\right] d s\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\int_{0}^{h}\left[\begin{array}{c}
e^{-s} \\
1-e^{-s}
\end{array}\right] d s=\left[\begin{array}{c}
1-e^{-h} \\
h+e^{-h}-1
\end{array}\right]
\end{aligned}
$$

c) The discrete-time transfer function from discrete-time state-space representation is given by

$$
\left.\begin{array}{rl}
G(z) & =C(z I-\Phi)^{-1} \Gamma+D \\
& =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left(z I-\left[\begin{array}{cc}
e^{-h} & 0 \\
1-e^{-h} & 1
\end{array}\right]\right)^{-1}\left[\begin{array}{c}
1-e^{-h} \\
h+e^{-h}-1
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{cc}
z-e^{-h} & 0 \\
-1+e^{-h} & z-1
\end{array}\right]^{-1}\left[\begin{array}{c}
1-e^{-h} \\
h+e^{-h}-1
\end{array}\right] \\
& =\frac{1}{(z-1)\left(z-e^{-h}\right)}\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{cc}
z-1 & 0 \\
1-e^{-h} & z-e^{-h}
\end{array}\right]\left[\begin{array}{c}
1-e^{-h} \\
h+e^{-h}-1
\end{array}\right] \\
& =\frac{1}{(z-1)\left(z-e^{-h}\right)}\left[1-e^{-h}\right. \\
z-e^{-h}
\end{array}\right]\left[\begin{array}{c}
1-e^{-h} \\
h+e^{-h}-1
\end{array}\right] \quad\left[\begin{array}{ll}
\left(1-e^{-h}\right)^{2}+\left(z-e^{-h}\right)\left(h+e^{-h}-1\right) \\
(z-1)\left(z-e^{-h}\right)
\end{array}\right.
$$

d) The system under consideration:

$$
\begin{aligned}
\mathbf{x}[k+1] & =\left[\begin{array}{cc}
e^{-h} & 0 \\
1-e^{-h} & 1
\end{array}\right] \mathbf{x}[k]-\left[\begin{array}{c}
1-e^{-h} \\
h+e^{-h}-1
\end{array}\right]\left[\begin{array}{ll}
l_{1} & \left.l_{2}\right] \mathbf{x}[k] \\
& =\left[\begin{array}{cc}
e^{-h} & 0 \\
1-e^{-h} & 1
\end{array}\right] \mathbf{x}[k]-\left[\begin{array}{cc}
\left(1-e^{-h}\right) l_{1} & \left(1-e^{-h}\right) l_{2} \\
\left(h+e^{-h}-1\right) l_{1} & \left(h+e^{-h}-1\right) l_{2}
\end{array}\right] \mathbf{x}[k] \\
& =\left[\begin{array}{cc}
e^{-h}-\left(1-e^{-h}\right) l_{1} & -\left(1-e^{-h}\right) l_{2} \\
1-e^{-h}-\left(h+e^{-h}-1\right) l_{1} & 1-\left(h+e^{-h}-1\right) l_{2}
\end{array}\right] \mathbf{x}[k]
\end{array}\right.
\end{aligned}
$$

The corresponding characteristic polynomial is:

$$
\begin{aligned}
\chi(z) & =\operatorname{det}(z I-\Phi+\Gamma L) \\
& =\left|\begin{array}{cc}
z-e^{-h}+\left(1-e^{-h}\right) l_{1} & \left(1-e^{-h}\right) l_{2} \\
-1+e^{-h}+\left(h+e^{-h}-1\right) l_{1} & z-1+\left(h+e^{-h}-1\right) l_{2}
\end{array}\right|
\end{aligned}
$$

Let $a:=e^{-h}$ and $b:=h+e^{-h}-1$. Then, $\chi(z)$ can be simplified to

$$
\begin{aligned}
\chi(z)= & \left|\begin{array}{cc}
z-a+(1-a) l_{1} & (1-a) l_{2} \\
-1+a+b l_{1} & z-1+b l_{2}
\end{array}\right| \\
= & \left(z-a+(1-a) l_{1}\right)\left(z-1+b l_{2}\right)-(1-a) l_{2}\left(-1+a+b l_{1}\right) \\
= & z^{2}+z\left[\left(-1+b l_{2}\right)+\left(-a+(1-a) l_{1}\right)\right] \\
& \quad+\left(-a+(1-a) l_{1}\right)\left(-1+b l_{2}\right)-(1-a) l_{2}\left(-1+a+b l_{1}\right)
\end{aligned}
$$

Since we want a deadbeat control, the determinant should be equal to z^{2} (i.e., the poles are equal to zero). Therefore,

$$
\left\{\begin{array}{l}
\left(-a+(1-a) l_{1}\right)\left(-1+b l_{2}\right)-(1-a) l_{2}\left(-1+a+b l_{1}\right)=0 \\
\left(-1+b l_{2}\right)+\left(-a+(1-a) l_{1}\right)=0
\end{array}\right.
$$

from which l_{1} and l_{2} can be extracted. After algebraic manipulation

$$
\left\{\begin{array}{l}
-(1-a) l_{1}-a b l_{2}+(1-a)^{2} l_{2}=-a \tag{3}\\
(1-a) l_{1}+b l_{2}=1+a
\end{array}\right.
$$

Adding the two equations we get

$$
\begin{aligned}
b l_{2}-a b l_{2}+(1-a)^{2} l_{2}=1 & \Rightarrow(1-a) b l_{2}+(1-a)^{2} l_{2}=1 \\
& \Rightarrow(1-a)(b+1-a) l_{2}=1 \\
& \Rightarrow(1-a) h l_{2}=1 \quad(\text { note: } b=h+a-1) \\
& \Rightarrow l_{2}=\frac{1}{h\left(1-e^{-h}\right)}
\end{aligned}
$$

Substituting l_{2} back in (3), we get

$$
(1-a) l_{1}+\frac{b}{h(1-a)}=1+a \Rightarrow l_{1}=\frac{1}{1-a}\left(1+a-\frac{b}{h(1-a)}\right)
$$

e) In this case,

$$
u[0]=\left[\begin{array}{ll}
l_{1} & l_{2}
\end{array}\right] \mathbf{x}[0]=l_{1} .
$$

Since we want $u[0]<1$ we should choose h such that $l_{1}<1$. Therefore, from part (b) we get

$$
\begin{aligned}
\frac{1}{1-a}\left(1+a-\frac{b}{h(1-a)}\right)<1 & \Rightarrow 1-a>1+a-\frac{b}{h(1-a)} \\
& \Rightarrow \frac{b}{h(1-a)}>2 a \\
& \Rightarrow h+e^{-h}-1>2 h e^{-h}\left(1-e^{-h}\right)
\end{aligned}
$$

An h should be chosen such that the inequality above is satisfied.

