Name:
Student no:

Answer all five questions (in English, Finnish, or Swedish). Using a calculator is allowed, but all memory must be cleared! Please return also this problem paper. Remember to write your name and student number above.

1. Describe the field-oriented control system for permanent-magnet synchronous motors. Draw also the block diagram of the control system, label the signals in the diagram, and describe the tasks of the blocks.

## Solution:

See lectures, exercises, and readings.
2. Answer briefly to the following questions:
(a) Why three-phase machines are preferred to single-phase AC machines?
(b) How the physical size of the motor approximately depends on the rated values of the motor?
(c) Why the antiwindup is used in PI controllers?

## Solution:

See lectures, exercises, and readings.
3. (a) A DC motor is used in a periodic duty, whose cycle length is $t_{\mathrm{c}}=5 \mathrm{~min}$. As shown in the figure below, the armature current is $0.5 I_{\mathrm{N}}$ for 4 min and $2 I_{\mathrm{N}}$ for 1 min during each cycle. Calculate the rms current $I_{\mathrm{a}, \mathrm{rms}}$.
(b) The thermal time constant of the motor is $\tau_{\text {th }}=15 \mathrm{~min}$. The motor is cold in the beginning, i.e., the initial temperature rise $\theta=0$ at $t=0$. In the graph below, draw the waveform for the average temperature rise as a function of time corresponding to the rms current $I_{\mathrm{a}, \mathrm{rms}}$. What is the value of the average temperature rise at $t=30 \mathrm{~min}$ ? Sketch also the waveform for the instantaneous temperature rise.


## Solution:

(a) Using the given current waveform, the rms current is

$$
I_{\mathrm{a}, \mathrm{rms}}=\sqrt{\frac{1}{t_{\mathrm{c}}} \int_{0}^{t_{\mathrm{c}}} i_{\mathrm{a}}^{2} \mathrm{~d} t}=\sqrt{\frac{\left(0.5 I_{\mathrm{N}}\right)^{2} \cdot 4 \mathrm{~min}+\left(2 I_{\mathrm{N}}\right)^{2} \cdot 1 \mathrm{~min}}{5 \mathrm{~min}}}=I_{\mathrm{N}}
$$

Therefore, the motor is dimensioned such that the steady-state average temperature rise matches the rated temperature rise of the motor.
(b) The thermal model can be assumed to be a first-order system. Therefore, the average temperature rise as a function of time corresponding to the rms current $I_{\mathrm{a}, \mathrm{rms}}$ is

$$
\theta(t)=\theta_{0}+\left(\theta_{\infty}-\theta_{0}\right)\left(1-\mathrm{e}^{-t / \tau_{\mathrm{th}}}\right)=\theta_{\mathrm{N}}\left(1-\mathrm{e}^{-t / \tau_{\mathrm{th}}}\right)
$$

where $\theta_{0}=0$ and $\theta_{\infty}=\theta_{\mathrm{N}}$ in this case. This waveform is drawn in the graph below using the blue solid curve.
The average temperature rise at $t=30 \mathrm{~min}$ is $\theta=\left(1-\mathrm{e}^{-30 / 15}\right) \theta_{\mathrm{N}}=0.86 \theta_{\mathrm{N}}$.
The waveform for the instantaneous temperature rise is also sketched in the graph using the red dashed curve.

4. Consider a three-phase four-pole permanent-magnet synchronous motor. The stator inductance is $L_{\mathrm{s}}=0.035 \mathrm{H}$ and the stator resistance can be assumed to be zero. The permanent magnets induce the rated voltage of 400 V at the rotational speed of 1500 $\mathrm{r} / \mathrm{min}$. The rated current is 7.3 A .
(a) The control principle $i_{\mathrm{d}}=0$ is used. The motor is operated at the rated voltage and current. Calculate the rotational speed, torque, and mechanical power.
(b) The motor is driven in the field-weakening region at the rated voltage and current. The speed is increased until the absolute values of $i_{\mathrm{d}}$ and $i_{\mathrm{q}}$ are equal. Calculate the rotational speed, torque, and mechanical power.
(c) Draw also the vector diagrams corresponding to Parts (a) and (b).

## Solution:

The peak-valued quantities will be used. The rated current is $i_{\mathrm{N}}=\sqrt{2} \cdot 7.3 \mathrm{~A}=10.3 \mathrm{~A}$ and the rated line-to-neutral voltage is $u_{\mathrm{N}}=\sqrt{2 / 3} \cdot 400 \mathrm{~V}=326.6 \mathrm{~V}$. It is known that the induced voltage is $\left|\underline{e}_{\mathrm{s}}\right|=u_{\mathrm{N}}$ at the electrical angular speed

$$
\omega_{\mathrm{m}}=2 \pi p n=2 \pi \cdot 2 \cdot \frac{1500 \mathrm{r} / \mathrm{min}}{60 \mathrm{~s} / \mathrm{min}}=2 \pi \cdot 50 \mathrm{rad} / \mathrm{s}
$$

Hence, the permanent-magnet flux linkage can be solved as

$$
\psi_{\mathrm{f}}=\frac{\left|\underline{e}_{\mathrm{s}}\right|}{\omega_{\mathrm{m}}}=\frac{326.6 \mathrm{~V}}{2 \pi \cdot 50 \mathrm{rad} / \mathrm{s}}=1.040 \mathrm{Vs}
$$

(a) Since $i_{\mathrm{d}}=0$ and $i_{\mathrm{q}}=i_{\mathrm{N}}$, the current vector is

$$
\underline{i}_{\mathrm{s}}=i_{\mathrm{d}}+\mathrm{j} i_{\mathrm{q}}=\mathrm{j} i_{\mathrm{N}}=\mathrm{j} 10.3 \mathrm{~A}
$$

The stator flux linkage is

$$
\underline{\psi}_{\mathrm{s}}=L_{\mathrm{s}} \underline{i}_{\mathrm{s}}+\psi_{\mathrm{f}}=0.035 \mathrm{H} \cdot \mathrm{j} 10.3 \mathrm{~A}+1.040 \mathrm{Vs}=1.040+\mathrm{j} 0.361 \mathrm{Vs}
$$

and its magnitude is

$$
\left|\underline{\psi}_{\mathrm{s}}\right|=\sqrt{\psi_{\mathrm{d}}^{2}+\psi_{\mathrm{q}}^{2}}=\sqrt{1.040^{2}+0.361^{2}} \mathrm{Vs}=1.10 \mathrm{Vs}
$$

Omitting the stator resistance, the steady-state voltage equation is

$$
\underline{u}_{\mathrm{s}}=\mathrm{j} \omega_{\mathrm{m}} \underline{\psi}_{\mathrm{s}}
$$

Hence, the electrical angular speed of the rotor becomes

$$
\omega_{\mathrm{m}}=\frac{\left|\underline{u}_{\mathrm{s}}\right|}{\left|\underline{\psi}_{\mathrm{s}}\right|}=\frac{326.6 \mathrm{~V}}{1.10 \mathrm{Vs}}=296.9 \mathrm{rad} / \mathrm{s}
$$

and the corresponding rotational speed is

$$
n=\frac{\omega_{\mathrm{m}}}{2 \pi p}=\frac{296.9 \mathrm{rad} / \mathrm{s}}{2 \pi \cdot 2} \cdot 60 \mathrm{~s} / \mathrm{min}=1418 \mathrm{r} / \mathrm{min}
$$

The torque is

$$
T_{\mathrm{M}}=\frac{3 p}{2} \psi_{\mathrm{f}} i_{\mathrm{q}}=\frac{3 \cdot 2}{2} \cdot 1.040 \mathrm{Vs} \cdot 10.3 \mathrm{~A}=32.1 \mathrm{Nm}
$$

and the mechanical power is

$$
P_{\mathrm{M}}=T_{\mathrm{M}} \omega_{\mathrm{M}}=T_{\mathrm{M}} \frac{\omega_{\mathrm{m}}}{p}=32.1 \mathrm{Nm} \cdot \frac{296.9 \mathrm{rad} / \mathrm{s}}{2}=4.77 \mathrm{~kW}
$$

The vector diagram is shown at the end of the solution.
(b) Now $\left|i_{\mathrm{d}}\right|=\left|i_{\mathrm{q}}\right|$ and $\left|i_{\mathrm{s}}\right|=\sqrt{i_{\mathrm{d}}^{2}+i_{\mathrm{q}}^{2}}=i_{\mathrm{N}}$. Hence, the absolute values of the current components are

$$
\left|i_{\mathrm{d}}\right|=\left|i_{\mathrm{q}}\right|=i_{\mathrm{N}} / \sqrt{2}=7.3 \mathrm{~A}
$$

The component $i_{\mathrm{d}}$ is negative in the field-weakening region and the component $i_{\mathrm{q}}$ is positive at positive torque:

$$
\underline{i}_{\mathrm{s}}=i_{\mathrm{d}}+\mathrm{j} i_{\mathrm{q}}=-7.3+\mathrm{j} 7.3 \mathrm{~A}
$$

The stator flux linkage is

$$
\begin{aligned}
\underline{\psi}_{\mathrm{s}} & =L_{\mathrm{s}} i_{\mathrm{s}}+\psi_{\mathrm{f}} \\
& =0.035 \mathrm{H} \cdot(-7.3+\mathrm{j} 7.3) \mathrm{A}+1.040 \mathrm{Vs}=0.785+\mathrm{j} 0.256 \mathrm{Vs}
\end{aligned}
$$

and its magnitude is

$$
\left|\underline{\psi}_{\mathrm{s}}\right|=\sqrt{\psi_{\mathrm{d}}^{2}+\psi_{\mathrm{q}}^{2}}=\sqrt{0.785^{2}+0.256^{2}} \mathrm{Vs}=0.825 \mathrm{Vs}
$$

Hence, the electrical angular speed of the rotor becomes

$$
\omega_{\mathrm{m}}=\frac{\left|\underline{u}_{\mathrm{s}}\right|}{\left|\underline{\psi}_{\mathrm{s}}\right|}=\frac{326.6 \mathrm{~V}}{0.825 \mathrm{Vs}}=395.9 \mathrm{rad} / \mathrm{s}
$$

and the corresponding rotational speed is

$$
n=\frac{\omega_{\mathrm{m}}}{2 \pi p}=\frac{395.9 \mathrm{rad} / \mathrm{s}}{2 \pi \cdot 2} \cdot 60 \mathrm{~s} / \mathrm{min}=1890 \mathrm{r} / \mathrm{min}
$$

The torque and mechanical power are

$$
\begin{gathered}
T_{\mathrm{M}}=\frac{3 p}{2} \psi_{\mathrm{f}} i_{\mathrm{q}}=\frac{3 \cdot 2}{2} \cdot 1.040 \mathrm{Vs} \cdot 7.3 \mathrm{~A}=22.8 \mathrm{Nm} \\
P_{\mathrm{M}}=T_{\mathrm{M}} \frac{\omega_{\mathrm{m}}}{p}=22.8 \mathrm{Nm} \cdot \frac{396 \mathrm{rad} / \mathrm{s}}{2}=4.5 \mathrm{~kW}
\end{gathered}
$$

The vector diagrams are shown below.


Remark: It can be noticed that the torque decreases more than inversely proportionally to the speed in the field-weakening region and the mechanical power decreases. In surface-mounted permanent-magnet machines, the d component of the current produces no torque; it only magnetises against the permanent magnets in order to decrease the stator flux magnitude.
5. A DC motor is fed from a current-controlled converter. The shaft of the rotor is connected to a fan, whose load-torque profile $\left|T_{\mathrm{L}}\right|=k \omega_{\mathrm{M}}^{2}$ is quadratic. Two different armature current pulses are applied, as shown in the figures below. Based on the waveforms, determine the total inertia $J$ and the load-torque coefficient $k$. You may use some assumptions, but justify them briefly.
[Hint: Determine first the flux factor $k_{\mathrm{f}}$.]


## Solution:

The armature voltage of the DC motor is

$$
u_{\mathrm{a}}=R_{\mathrm{a}} i_{\mathrm{a}}+L_{\mathrm{a}} \frac{\mathrm{~d} i_{\mathrm{a}}}{\mathrm{~d} t}+k_{\mathrm{f}} \omega_{\mathrm{M}}
$$

The flux factor $k_{\mathrm{f}}$ can be solved using the waveforms on the right-hand side. After $t=$ 3 s , the armature current $i_{\mathrm{a}}$ is zero, and the armature voltage equals the back-emf, i.e., $u_{\mathrm{a}}=k_{\mathrm{f}} \omega_{\mathrm{M}}$. Therefore, the flux factor is

$$
k_{\mathrm{f}}=u_{\mathrm{a}} / \omega_{\mathrm{M}}=50.0 \mathrm{~V} / 100 \mathrm{rad} / \mathrm{s}=0.5 \mathrm{Vs}
$$

The equation of motion is

$$
J \frac{\mathrm{~d} \omega_{\mathrm{M}}}{\mathrm{~d} t}=T_{\mathrm{M}}-T_{\mathrm{L}}
$$

where the electromagnetic torque is $T_{\mathrm{M}}=k_{\mathrm{f}} i_{\mathrm{a}}$ and the load torque is $T_{\mathrm{L}}=k \omega_{\mathrm{M}}^{2}$. The load-torque coefficient $k$ can be calculated using the waveforms on the right-hand side. Based on the waveforms, the motor operates at constant speed at $t=2 \ldots 3$ s, i.e., $T_{\mathrm{L}}=T_{\mathrm{M}}=k_{\mathrm{f}} i_{\mathrm{a}}=0.5 \mathrm{Vs} \cdot 12 \mathrm{~A}=6 \mathrm{Nm}$. Therefore,

$$
k=T_{\mathrm{L}} / \omega_{\mathrm{M}}^{2}=6 \mathrm{Nm} /(141.4 \mathrm{rad} / \mathrm{s})^{2}=0.0003 \mathrm{Nm} \cdot \mathrm{~s}^{2}
$$

The total inertia can be solved from the waveforms on the left-hand side. The load torque is very low at low speeds due to the quadratic load-torque profile (less than 0.07 Nm at $15 \mathrm{rad} / \mathrm{s}$ based on the previous result). Therefore, $T_{\mathrm{L}}=0$ can be assumed during the acceleration at $t=0.05 \ldots 0.1 \mathrm{~s}$, resulting in the total inertia

$$
J=\frac{T_{\mathrm{M}}}{\Delta \omega_{\mathrm{M}} / \Delta t}=\frac{3 \mathrm{Nm}}{(15 \mathrm{rad} / \mathrm{s}) / 0.05 \mathrm{~s}}=0.01 \mathrm{kgm}^{2}
$$

Remark 1: The total inertia could also be solved from the test shown on the righthand side, if the data at low speeds (zoom after $t=1 \mathrm{~s}$ ) were given.

Remark 2: If the flux factor $k_{\mathrm{f}}$ were calculated using the data at $t=2 \ldots 3$, an (unnecessary) error of $8 \%$ would appear in $k_{\mathrm{f}}$ (since this approach assumes $R_{\mathrm{a}}=0$ ).

Remark 3: The armature resistance $R_{\mathrm{a}}$ could also be solved using the right-hand side waveforms. Since the current is constant at at $t=2 \ldots 3$, the resistance is

$$
R_{\mathrm{a}}=\frac{u_{\mathrm{a}}-k_{\mathrm{f}} \omega_{\mathrm{M}}}{i_{\mathrm{a}}}=\frac{76.7 \mathrm{~V}-0.5 \cdot 141.4 \mathrm{~V}}{12.0 \mathrm{~A}}=0.5 \Omega
$$

This is not a practical test for determining the resistance, however.

