ELEC-E7210 Communication Theory

This is a closed book exam All five tasks are evaluated and taken into account in the grading. The exam can be written in Finnish, Swedish or English.

Exam 12.12, 2019

- 1. Consider a uniform linear antenna array with N_t transmit antennas.
 - a) Compute the array gain for $N_t = 2, 4, 6, 8$. What can you say about the benefit of expanding the array with additional antennas?
 - b) What would be the benefit of exploiting the spatial diversity of the array?
 - c) The receiver has N_r antennas. What is the maximal multiplexing gain?
 - d) How could you exploit the array in a multiuser scenario?
- 2. A Mobile Station is moving with a velocity of v=3 km/h, and communicating on a carrier frequency of $f_c=1$ GHz. The symbol duration is T=5 μs and the bandwidth is W=1/T=200 kHz. The channel is a tapped delay line with three channel taps

Tap i	1	2	3
Delay τ_i [μs]	0	0.2	0.5
Power P_i [dB]	-3	0	-4

a) What is the maximum Doppler shift and the Doppler spread of the channel? Estimate the coherence time. Is the signal at the mobile station rapidly or slowly fading?

Hint: The speed of light is $c = 3 \cdot 10^8 \text{ m/s}$

- b) What is the maximum excess delay of the channel? Estimate the coherence bandwidth. Is the channel frequency selective or frequency flat?
- 3. A signal is received over two independently fading channels in signal space. The fading coefficients of the channels are $h_1 = 6$ and $h_2 = 2$, and the amplitude of the transmitted symbols is 1. In both channels the noise variance is the same, $\sigma_N^2 = 4$. We assume a real channel with real signals and real noise.
 - a) Calculate the received SNR if the receiver uses only the first channel.
 - b) Calculate the received SNR for maximum ratio combining (MRC).
 - c) Calculate the received SNR for equal gain combining (EGC).
 - d) Express the gain achieved while using MRC and EGC compared to using only the first channel as in a).
- 4. Consider the vector signal model $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n}$, where $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ and $\mathbf{n} = \mathbf{n}$
 - $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$. The noise is white and Gaussian, and the variance of the noise samples is $\mathrm{E}\{n_i n_i^*\} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$

 N_0 . The expected symbol energy is one: $E\{x_ix_i^*\}=1$. The channel matrix is $H=\begin{bmatrix}1&2\\3&4\end{bmatrix}$.

- a) What is the post-processing signal-to-interference-and-noise ratio (SINR) experienced by symbols x_1 and x_2 , after Zero Forcing processing has been used in the receiver to mitigate crosstalk? Hint: A Zero-Forcing receiver removes all interference, but amplifies noise. Noise variance is amplified by a factor given by the diagonal elements of the inverse of the channel covariance matrix $\mathbf{H}^H\mathbf{H}$. Note that the noise affecting the transmitted signals x_1 and x_2 is amplified with a different factor.
- b) What would the SINRs be if all crosstalk (off-diagonal terms in H) would be removed?
- 5. Consider a static r-Tx and r-Rx antenna MIMO channel, with $r \times r$ channel matrix H, known perfectly to Tx and Rx. Given codeword $\mathbf{x} = [x_1, x_2, \dots, x_r]^T$, the Rx signal is modeled as

$$y = Hx + n,$$

where the vector \mathbf{n} is white Gaussian noise. Given matrix \mathbf{H} , the capacity of the channel is

$$C_{\mathbf{H}}(\rho) = B \max_{\rho_i : \ \Sigma_i \rho_i \le \rho} \sum_i \log_2(1 + \lambda_i \rho_i),$$

where ρ is the average transmit SNR, i.e. the ratio of the transmit power to receiver noise power, B is bandwidth, and $\sqrt{\lambda_i}$ are singular values of H. Now take B=100 KHz, $\rho=10$ dB, and $\mathbf{H}=\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$.

- a) Find the singular values of H. Express the MIMO signal model with this channel matrix in an equivalent form in terms of parallel channels. Hint: You find the singular values by first finding the eigenvalues λ by solving the equation $\det \left(\mathbf{H}^T \mathbf{H} \lambda \mathbf{I} \right) = 0$, and taking the square root of the eigenvalues.
- b) Find the capacity of the channel with this channel matrix.

Hint: Note that

$$\log_2(1+x) + \log_2(1+y) \le 2\log_2((1+y+1+x)/2)$$

for all positive x and y.