Questions of the exam CONVEX OPTIMIZATION II (2019) by Prof Sergiy Vorobyov:

(below are questions asked during the exam, the QP was taken back after exam)

5.27 Equality constrained least-squares. Consider the equality constrained least-squares prob-

minimize
$$||Ax - b||_2^2$$

subject to $Gx = h$

where $A \in \mathbb{R}^{m \times n}$ with rank A = n, and $G \in \mathbb{R}^{p \times n}$ with rank G = p.

Give the KKT conditions, and derive expressions for the primal solution x^* and the dual solution ν^* .

Composition of linear-fractional functions. Suppose $\phi: \mathbf{R}^n \to \mathbf{R}^m$ and $\psi: \mathbf{R}^m \to \mathbf{R}^p$ are the linear-fractional functions

$$\phi(x) = \frac{Ax+b}{c^Tx+d}, \qquad \psi(y) = \frac{Ey+f}{g^Ty+h},$$

with domains $\operatorname{dom} \phi = \{x \mid c^T x + d > 0\}, \operatorname{dom} \psi = \{y \mid g^T x + h > 0\}.$ We associate with ϕ and ψ the matrices

$$\left[\begin{array}{cc} A & b \\ c^T & d \end{array}\right], \qquad \left[\begin{array}{cc} E & f \\ g^T & h \end{array}\right],$$

respectively.

Now consider the composition Γ of ψ and ϕ , i.e., $\Gamma(x) = \psi(\phi(x))$, with domain

$$\operatorname{dom} \Gamma = \{ x \in \operatorname{dom} \phi \mid \phi(x) \in \operatorname{dom} \psi \}.$$

Show that Γ is linear-fractional, and that the matrix associated with it is the product

$$\left[\begin{array}{cc} E & f \\ g^T & h \end{array}\right] \left[\begin{array}{cc} A & b \\ c^T & d \end{array}\right].$$

12.12 Spectral factorization via semidefinite programming. A Toeplitz matrix is a matrix that has constant values on its diagonals. We use the notation

$$T_m(x_1,\ldots,x_m) = \begin{bmatrix} x_1 & x_2 & x_3 & \cdots & x_{m-1} & x_m \\ x_2 & x_1 & x_2 & \cdots & x_{m-2} & x_{m-1} \\ x_3 & x_2 & x_1 & \cdots & x_{m-3} & x_{m-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{m-1} & x_{m-2} & x_{m-2} & \cdots & x_1 & x_2 \\ x_m & x_{m-1} & x_{m-2} & \cdots & x_2 & x_1 \end{bmatrix}$$

to denote the symmetric Toeplitz matrix in $S^{m \times m}$ constructed from x_1, \ldots, x_m . Consider the semidefinite program

minimize
$$c^T x$$

subject to $T_n(x_1, \dots, x_n) \succeq e_1 e_1^T$,

with variable $x = (x_1, ..., x_n)$, where $e_1 = (1, 0, ..., 0)$.

- (a) Derive the dual of the SDP above. Denote the dual variable as Z. (Hence $Z \in \mathbf{S}^n$ and the dual constraints include an inequality $Z \succeq 0$.)
- (b) Show that T_n(x₁,...,x_n) > 0 for every feasible x in the SDP above. You can do this by induction on n.
 - For n = 1, the constraint is x₁ ≥ 1 which obviously implies x₁ > 0.
 - In the induction step, assume $n \geq 2$ and that $T_{n-1}(x_1, \ldots, x_{n-1}) \succ 0$. Use a Schur complement argument and the Toeplitz structure of T_n to show that $T_n(x_1, \ldots, x_n) \succeq e_1 e_1^T$ implies $T_n(x_1, \ldots, x_n) \succ 0$.
- (c) Suppose the optimal value of the SDP above is finite and attained, and that Z is dual optimal. Use the result of part (b) to show that the rank of Z is at most one, i.e., Z can be expressed as $Z = yy^T$ for some n-vector y. Show that y satisfies

$$\begin{array}{rcl} y_1^2 + y_2^2 + \cdots + y_n^2 & = & c_1 \\ y_1 y_2 + y_2 y_3 + \cdots + y_{n-1} y_n & = & c_2/2 \\ & & \vdots \\ y_1 y_{n-1} + y_2 y_n & = & c_{n-1}/2 \\ y_1 y_n & = & c_n/2. \end{array}$$

369

This can be expressed as an identity $|Y(\omega)|^2 = R(\omega)$ between two functions

$$Y(\omega) = y_1 + y_2 e^{-i\omega} + y_3 e^{-3i\omega} + \dots + y_n e^{-i(n-1)\omega}$$

 $R(\omega) = c_1 + c_2 \cos \omega + c_3 \cos(2\omega) + \dots + c_n \cos((n-1)\omega)$

(with $i = \sqrt{-1}$). The function $Y(\omega)$ is called a *spectral factor* of the trigonometric polynomial $R(\omega)$.

Problem 6: (5 points) Gradient and Newton methods for composition functions. Suppose $\phi: \mathbf{R} \to \mathbf{R}$ is increasing and convex, and $f: \mathbf{R}^n \to \mathbf{R}$ is convex, so $g(x) = \phi(f(x))$ is convex. (We assume that f and g are twice differentiable.) The problems of minimizing f and minimizing g are clearly equivalent.

Compare the gradient method and Newton's method, applied to f and g. How are the search directions related? How are the methods related if an exact line search is used?

Hint. Use the matrix inversion lemma.