Aalto University

Björn Ivarsson, 050-4067 832

Exam, Monday December 7th 2020, 09:00-13:00

Complex Analysis, MS-C1300
Motivate your answers. Only giving answers gives no points.
See exam instructions here:
https://mycourses.aalto.fi/mod/page/view.php?id=665605
(1) (a) Give an example of a function $f: \mathbb{C} \rightarrow \mathbb{C}$ that is not analytic.
(b) Let $z=x+i y \in \mathbb{C}$. Is

$$
\begin{equation*}
f(z)=x^{3}-3 x y^{2}+i\left(3 x^{2} y-y^{3}\right) \tag{2p}
\end{equation*}
$$

analytic? Justify your answer.
(c) Let $z=x+i y \in \mathbb{C}$. Is

$$
\begin{equation*}
f(z)=\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}} \tag{3p}
\end{equation*}
$$

analytic in $\mathbb{C} \backslash\{0\}$? Justify your answer.
(2) (a) Let $a \neq 0$ and $b \neq 0$ be complex numbers. Find the Taylor series of

$$
f(z)=\frac{1}{a z+b}
$$

around $z_{0}=0$. Determine the radius of convergence ρ for the series.
(b) Find the Taylor series of

$$
f(z)=\left\{\begin{array}{l}
\frac{\sin z}{z}, \text { when } z \neq 0 \\
1, \text { when } z=0
\end{array}\right.
$$

around $z_{0}=0$. Determine the radius of convergence ρ for the series.
(c) Find the Laurent series of

$$
f(z)=(z-1) \sin \left(z^{-1}\right)
$$

in $\{z \in \mathbb{C} ; 0<|z|<\infty\}$.
(3) Let $a>0$. Calculate

$$
\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+a^{2}\right)^{2}} d x
$$

(4) Let $D \subseteq \mathbb{C}$ be a domain and $f: D \rightarrow \mathbb{C}$ be an analytic function. Assume that there is a point $z_{0} \in D$ such that

$$
0<\left|f\left(z_{0}\right)\right| \leq|f(z)|
$$

for all $z \in D$. Prove that f is constant in D.

Good luck!

