A

Matrix Algebra
MS-A0001
Hakula/Mirka

T

Course Exam, 8.12.2020

Please follow the instruction given on the exam page. Every question carries an equal weight, similarly every part of a question carries an equal weight, unless otherwise specified.

Problem 1 Let

$$
A=\left(\begin{array}{ccc}
6 & 16 & 21 \\
10 & 0 & -15 \\
4 & 4 & 14
\end{array}\right), \quad b=\left(\begin{array}{c}
10 \\
-50 \\
40
\end{array}\right), \quad x=\left(\begin{array}{c}
1 \\
-5 \\
4
\end{array}\right) .
$$

a) Is x the solution of the equation $A x=b$?
b) Is x an eigenvector of the matrix A ?

Problem 2 Solve the linear system $A x=b$ for all admissible values of $\beta \in \mathbb{R}$, where

$$
A=\left(\begin{array}{rrrr}
2 & 3 & -1 & 4 \\
3 & -1 & 0 & 1 \\
1 & -4 & 1 & -2 \\
2 & -2 & -2 & 5
\end{array}\right), \quad b=\left(\begin{array}{r}
16 \\
-5 \\
-22 \\
\beta
\end{array}\right) .
$$

Problem 3 (a) Find the $L U$-decomposition of

$$
A=\left(\begin{array}{ccc}
4 & -1 & 0 \\
-1 & 3 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

(b) Compute $\operatorname{det}(A)$.

Problem 4 (a) Show that the vectors $a_{1}=\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)^{\mathrm{T}}, a_{2}=\left(\begin{array}{lll}0 & 1 & 1\end{array}\right)^{\mathrm{T}}$, $a_{3}=\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)^{\mathrm{T}}$ form a basis of \mathbb{R}^{3}. (b) Find the coordinates of the vector $x=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)^{\mathrm{T}}$ in this basis.

Problem 5 (a) Find the angle between the eigenvectors of the matrix

$$
\left(\begin{array}{cc}
1 & 1 \\
0 & 1+t
\end{array}\right)
$$

as a function of the parameter t. (b) What is the relation between the angle and the linear independence of the eigenvectors?

