MS-C1350 Partial differential equations, fall 2020
Course exam on 14 Dec 2020 at 9:00-13:00

This set of problems is for the participants of the course in the fall 2020 and affects 40% in the grading of the course.
Remember to explain carefully your answers. Remember to answer to Problem 1 (multiple choice question) as well.
Each question is worth 6 points. Some problems may have bonus parts with extra points.
2. (a) Assume that $u=u(x, t)$ is a solution to $u_{t}-c^{2} \Delta u=0$ in $\mathbb{R}^{n} \times \mathbb{R}$, with $c>0$. For which values of parameters $a, b \in \mathbb{R}$ the function $v(x, t)=u(a x, b t)$ is a solution to $v_{t}-\Delta v=0$? (4p.)
(b) How does the situation change, if u is a solution to the initial value problem

$$
\begin{cases}u_{t}-c^{2} \Delta u=0, & (x, t) \in \mathbb{R}^{n} \times(0, \infty) \\ u(x, 0)=f(x), & x \in \mathbb{R}^{n}\end{cases}
$$

and we want to find parameters $a, b \in \mathbb{R}$ such that $v(x, t)=u(a x, b t)$ satisfies the initial value problem

$$
\begin{cases}v_{t}-\Delta v=0, & (x, t) \in \mathbb{R}^{n} \times(0, \infty) \tag{2p.}\\ v(x, 0)=f(x), & x \in \mathbb{R}^{n} ?\end{cases}
$$

3. (a) (3p.) Suppose that $\Omega \subset \mathbb{R}^{n}$ is a connected and bounded domain and $f, g \in C^{\infty}\left(\mathbb{R}^{n}\right)$. Give all solutions to the problem

$$
\left\{\begin{array}{l}
-\Delta u=f \quad \text { in } \quad \Omega \\
\frac{\partial u}{\partial \nu}=g \quad \text { on } \quad \partial \Omega
\end{array}\right.
$$

if we know that functions u_{1} and u_{2} are solutions to the following problems

$$
\left\{\begin{array}{l}
-\Delta u_{1}=f \quad \text { in } \quad \Omega, \\
\frac{\partial u_{1}}{\partial \nu}=0 \quad \text { on } \quad \partial \Omega
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
-\Delta u_{2}=0 \quad \text { in } \quad \Omega, \\
\frac{\partial u_{1}}{\partial \nu}=g \quad \text { on } \quad \partial \Omega
\end{array}\right.
$$

(b) (3p.) Assume that ϕ and ψ are smooth enough functions. Find a solution to the following problem by applying a suitable reflection method and d'Alembert's formula:

$$
\begin{cases}v_{t t}-v_{x x}=0, & 0<x<\infty, 0<t<\infty \\ v(x, 0)=\phi(x), v_{t}(x, 0)=\psi(x), & 0<x<\infty \\ v_{x}(0, t)=0, & 0<t<\infty\end{cases}
$$

4. Let $\Omega=(0,1) \times(0,1) \subset \mathbb{R}^{2}$ and $f \in C^{2}\left(\mathbb{R}^{2}\right)$. Let us consider the Dirichlet problem for the Laplace equation $\Delta u=0$ in Ω with boundary values $u(x, 0)=0, u(x, 1)=f(x)$, when $0<x<1$, and $u(0, y)=u(1, y)=0$, when $0<y<1$.
(a) Reduce the problem to two ODEs by using separation of variables. (2p.)
(b) Solve the separated equations to find special solutions. (2p.)
(c) Let $f=\sin (3 \pi x)$. Find the explicit solution u. (2p.)
(BONUS) How would you find a solution with correct boundary values with the general Dirichlet boundary condition $u=f$ on $\partial \Omega$? (2p.)
5. Let u be a solution to the problem $u_{t t}-c^{2} \Delta u=f$ in $\Omega_{T}=\Omega \times(0, T)$, where $\Omega \subset \mathbb{R}^{n}$ is an open and bounded domain, $c>0$ and f is a smooth enough function.
(a) Show that the energy

$$
e(t)=\frac{1}{2} \int_{\Omega}\left(\left(u_{t}\right)^{2}+c^{2}|\nabla u|^{2} d x\right)
$$

is preserved by u. (3p.)
(b) Use the result from part (a) to prove that there exists at most one solution to the problem

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} \Delta u=f \text { in } \Omega_{T}, \tag{3p.}\\
u=g \text { on } \Gamma_{T}, \\
u_{t}=h \text { in } \Omega \times\{t=0\} .
\end{array}\right.
$$

(It is ok to assume that solutions are smooth enough so that all necessary derivatives exist and integrals are finite.)

