MS-E1461 Hilbert spaces

Points also for good effort! You may use websites and the course material. Yet, the problems must be solved individually. Please indicate the sources you used.

1. Let G be a Hilbert space over the real scalar field \mathbb{R}. Explain how the Cartesian product $H=G \times G=\{(u, v): u, v \in G\}$ can be equipped with a complex Hilbert space structure: What are the vector space operations? What is the inner product? What is the norm? Verify your claims!
(Hint: Think of $(u, v) \in H$ as $u+\mathrm{i} v$.)
2. Consider the Hilbert space $H=\ell^{2}\left(\mathbb{Z}^{+}\right)$of absolutely square summable functions $u: \mathbb{Z}^{+} \rightarrow \mathbb{C}$. For $u \in H$ and $N \in \mathbb{Z}^{+}$, define $P_{N} u: \mathbb{Z}^{+} \rightarrow \mathbb{C}$ by

$$
P_{N} u(x):= \begin{cases}u(x) & \text { if } \quad x \leq N \\ 0 & \text { otherwise }\end{cases}
$$

(a) Let $P:=P_{N}$. Show that $P \in \mathscr{B}(H)$ such that $P^{2}=P=P^{*}$
(meaning that P is an orthogonal projection).
(b) Show that $\left\|P_{N} u-u\right\| \rightarrow 0$ as $N \rightarrow \infty$, for all $u \in H$.

Show that $\left\|P_{N}-I\right\|=1$ for all $N \in \mathbb{Z}^{+}$.
(c) Apply the Gram-Schmidt orthonormalization process for a linearly independent sequence $\left(u_{k}\right)_{k=1}^{\infty}$ in H, where $u_{k}(x):= \begin{cases}(-1)^{k} / x & \text { if } x \leq k, \\ 0 & \text { if } x>k .\end{cases}$
3. (a) Show that for each $A \in \mathscr{B}(H)$ there exists $A^{*} \in \mathscr{B}(H)$ such that $\langle A u, w\rangle=\left\langle u, A^{*} w\right\rangle$ for all $u, w \in H$.
(b) Let $H=\ell^{2}(\mathbb{Z})$ be the Hilbert space of the absolutely square summable functions $u: \mathbb{Z} \rightarrow \mathbb{C}$. How do the bounded linear functionals $\varphi: H \rightarrow \mathbb{C}$ look like?
(c) Let $L^{2}(\mathbb{R})$ be the Hilbert space of the absolutely square integrable functions $u: \mathbb{R} \rightarrow \mathbb{C}$. Let H be the Hilbert space of the Hilbert-Schmidt operators $A: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$. How do the bounded linear functionals $\psi: H \rightarrow \mathbb{C}$ look like?
4. Think of a direct sum decomposition $H=\bigoplus_{\alpha \in J} H_{\alpha}$, and let $P_{\alpha}: H \rightarrow H$ be the orthogonal projection onto H_{α}. Suppose $|\varphi(\alpha)|<1$ for all $\alpha \in J$, where $\varphi: J \rightarrow \mathbb{C}$ is injective. For $u \in H$, let $A u:=\sum_{\alpha \in J} \varphi(\alpha) P_{\alpha} u$.
(a) Show that $A \in \mathscr{B}(H)$. When would A be self-adjoint?
(b) What is the spectrum $\sigma(A)$ of A here?

Which are the eigenvalues and the corresponding eigenvectors?
Can $\sigma(A)$ here contain something else than the eigenvalues?
(Justify your answers! You may use the fact that $\sigma(A)$ is closed.)

