CIV-E1020 - Mechanics of Beam and Frame Structures - duration: 3h

It is compulsory to solve only THREE (3) EXERCISES that you choose freely: only three best exercises (answers) will be graded even if the student solves four.

- 1) Results given without shown the logical steps needed to achieve them will be ignored even if correct.
- 2) Sequentially number (numeroi juoksevasti) your answer papers $1(n) \dots n(n)$, where n is the number of separate papers. On each of the papers, write readably your name, family name and student number.

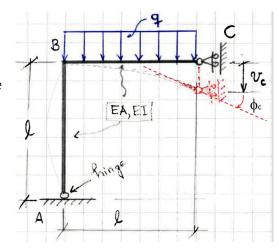
Formulary enclosed with the questions

Examination 10.12.2020

The material is linear elastic in all the structures below

1. Use the dummy unit-load theorem (or method) and determine the rotation ϕ_c at the roller C. Account for both the effects of bending and axial forces. [5p]

Grading 3 oblig	GRADE	
Points in this e		
14.25	15	5
12.75	13.5	4
9.75	12	3
8.25	9	2
6	7.5	1
< 6	fail	0



2EI

2. Use the general force method and

a) determine the bending moment at the mid-support B [3p] and draw accurately the bending moment diagram [1p]. Account only for effects of bending

b) Determine the support reaction at A (value and direction). [1p].

- 3. Use Slope-Deflection Method and
- a) determine the bending moment at the clamping support 1 and [4 points]
- b) determine and draw accurately the bending moment diagram [1 point]

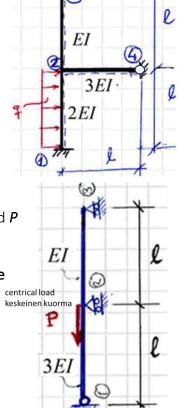
EI3EI2EI

4. Buckling of continuous beam-columns

A continuous column is loaded at mid support 2 by a concentrated centrical load P (keskeinen kuorma, zero eccentricity)

Use Slope-Deflection Method and 1) derive the explicit expression, in terms of Berry's stability functions, of the needed criticality condition for determining the critical buckling load P [3 p].

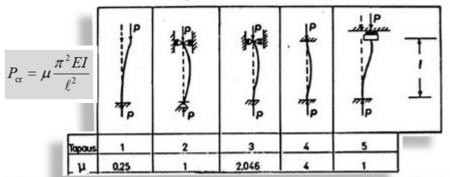
- 2) solve numerically for the value of the buckling load P [1p].
- 3) Give a bracket for the value of buckling load using cleverly the Euler's basic cases (see tables in the formulary) [1p].



The slope-deflection method:

Euler's basic buckling cases

Eulerin perusnurjahdus



$$M_{ij} = A_{ij}\phi_{ij} + B_{ij}\phi_{ji} - C_{ij}\psi_{ij} + \bar{M}_{ij}$$

$$M_{ii}^{0} = A_{ii}^{0} \varphi_{ii} - C_{ii}^{0} \psi_{ii} + \overline{M}_{ii}^{0}$$

Beam-column with constant flexural rigidity:

$$A_{ij} = A_{ji} = \frac{2\psi(kL)}{4\psi^{2}(kL) - \phi^{2}(kL)} \frac{6EI}{L}$$
 $B_{ij} = B_{ji} = \frac{\phi(kL)}{4\psi^{2}(kL) - \phi^{2}(kL)} \frac{6EI}{L}$

$$C_{ij} = A_{ij} + B_{ij}, \quad A_{ij}^0 = C_{ij}^0 = \frac{1}{\psi(kL)} \frac{3EI}{L},$$

$$kL \equiv L\sqrt{\frac{P}{EI}}$$

Berry's functions:

Olkoon $\lambda \equiv kL$,

$$\lambda \equiv kL$$

Puristettu sauva:

Compression:

$$\phi(\lambda) = \frac{6}{\lambda} \left(\frac{1}{\sin \lambda} - \frac{1}{\lambda} \right), \quad \psi(\lambda) = \frac{3}{\lambda} \left(\frac{1}{\lambda} - \frac{1}{\tan \lambda} \right), \quad \text{ja} \quad \chi(\lambda) = \frac{24}{\lambda^3} \left(\tan \frac{\lambda}{2} - \frac{\lambda}{2} \right),$$

Vedetty sauva:

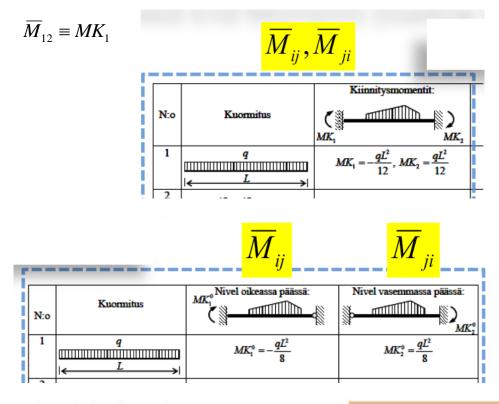
Extension:

$$\phi(\lambda) = \frac{6}{\lambda} \left(-\frac{1}{\sinh \lambda} + \frac{1}{\lambda} \right), \quad \psi(\lambda) = \frac{3}{\lambda} \left(-\frac{1}{\lambda} + \frac{1}{\tanh \lambda} \right), \quad \text{ja} \quad \chi(\lambda) = \frac{24}{\lambda^3} \left(-\tanh \frac{\lambda}{2} + \frac{\lambda}{2} \right),$$

$$\lambda_{ij} \equiv k_{ij}L_{ij} = L_{ij}\sqrt{\frac{|N_{ij}|}{EI_{ij}}} \rightarrow \lambda \equiv kL = L\sqrt{\frac{|N|}{EI}}$$

$$N \equiv -N_{ij} = -N_{ji} > 0$$

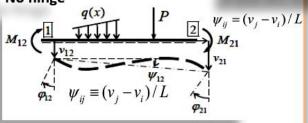
$$Q_{ij} = Q_{ij}^{0} - (M_{ij} + M_{ji})/L - N\psi_{ij}$$



The stiffness equation relating the end-moments to the end-displacements

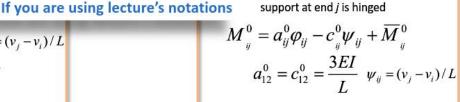
One node is hinged

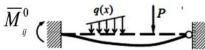
The is a superscript "0" means that the support at end *j* is hinged



$$\begin{split} M_{ij} &= a_{ij} \varphi_{ij} + b_{ij} \varphi_{ji} - c_{ij} \psi_{ij} + \overline{M}_{ij}, \ i \neq j \\ a_{ij} &= \frac{4EI}{L}, \ b_{ij} = \frac{2EI}{L}, \ c_{ij} = \frac{6EI}{L} \quad \textit{(EI-constant)} \end{split}$$

Fixed end-moment resulting from external mechanical loading, look from tables

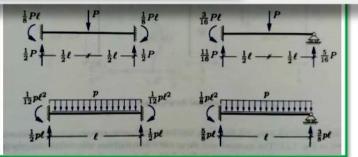


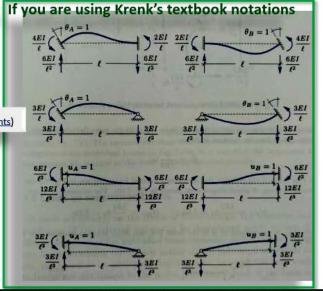


Fixed end-moment resulting from external mechanical loading, look from tables

If you are using Krenk's textbook notations

Bending Moments (pay attention to the sign convention to convert to Fixed-End-Moments)





Maxwell-Mohr integrals table

TABLEAU DES INTECRALES SE IMMEN

			0		
*M *M	c !!!!!!!!!!	c t	-Tild	c million d	2° des c
a	act	<u>i</u> acł	<u>1</u> adl	1 al (c+d)	2 acl
ه ا	<u>1</u> acl	1 act	1 adl	1 al(2c+d)	i act
b	1 bel	1 bol	1 bdl	1 bt (c+2d)	1 bcl
a b	1(a+b) cl	<u>1</u> (20+b) cl	± (a+2b)d€	{[a(2c+d) + + b(c+2d)]	1/3 (a+b) c f
2°-deg. Q	1 acl	≠ acl	<u>1</u> adl	12 al (3c+d)	<u>1</u> ac-l
Z deg.	<u>2</u> acl	<u>5</u> act	1/4 adl	<u>1</u> al (5c+3d)	<u>₹</u> acł