CIV-E1020 - Mechanics of Beam and Frame Structures - duration: 3h

It is compulsory to solve only THREE (3) EXERCISES that you choose freely: only three best exercises (answers) will be graded even if the student solves four.

1) Results given without shown the logical steps needed to achieve them will be ignored even if correct.
2) Sequentially number (numeroi juoksevasti) your answer papers $1(n) \ldots n(n)$, where n is the number of separate papers. On each of the papers, write readably your name, family name and student number.

Formulary enclosed with the questions

Examination 10.12.2020

The material is linear elastic in all the structures below

1. Use the dummy unit-load theorem (or method) and determine the rotation ϕ_{c} at the roller C. Account for both the effects of bending and axial forces. [5p]

Grading 3 obligatory exercises)	GRADE	
Points in this exam		
14.25	15	$\mathbf{5}$
12.75	13.5	4
9.75	12	3
8.25	9	2
6	7.5	1
<6	fail	0

2. Use the general force method and

a) determine the bending moment at the mid-support $B[3 p]$ and draw accurately the bending moment diagram [1p]. Account
 only for effects of bending
b) Determine the support reaction at A (value and direction).
3. Use Slope-Deflection Method and
a) determine the bending moment at the clamping support 1 and [4 points]
b) determine and draw accurately the bending moment diagram [1 point]

4. Buckling of continuous beam-columns

A continuous column is loaded at mid support 2 by a concentrated centrical load P (keskeinen kuorma, zero eccentricity)
Use Slope-Deflection Method and 1) derive the explicit expression, in terms of Berry's stability functions, of the needed criticality condition for determining the critical buckling load P [3p].
2) solve numerically for the value of the buckling load P
3) Give a bracket for the value of buckling load using cleverly the Euler's basic cases (see tables in the formulary) [1p].

The slope-deflection method:

Euler's basic buckling cases Eulerin perusnurjahdus

$M_{i j}=A_{i j} \phi_{i j}+\bar{B}_{i j} \phi_{j i}-C_{i j} \psi_{i j}+\bar{M}_{i j} \quad M_{i j}^{0}=A_{i j}^{0} \varphi_{i j}-C_{i j}^{0} \psi_{i j}+\bar{M}_{i j}^{0}$
Beam-column with constant flexural rigidity:

$$
\begin{aligned}
& A_{i j}=A_{j i}=\frac{2 \psi(k L)}{4 \psi^{2}(k L)-\phi^{2}(k L)} \frac{6 E I}{L}, \quad B_{i j}=B_{j i}=\frac{\phi(k L)}{4 \psi^{2}(k L)-\phi^{2}(k L)} \frac{6 E I}{L} \\
& C_{i j}=A_{i j}+B_{i j} \quad A_{i j}^{0}=C_{i j}^{0}=\frac{1}{\psi(k L)} \frac{3 E I}{L}, \quad k L \equiv L \sqrt{\frac{P}{E I}}
\end{aligned}
$$

Berry's functions:
Olkoon $\lambda \equiv k L, \quad \lambda \equiv k L$
Puristettu sauva:
$\phi(\lambda)=\frac{6}{\lambda}\left(\frac{1}{\sin \lambda}-\frac{1}{\lambda}\right), \psi(\lambda)=\frac{3}{\lambda}\left(\frac{1}{\lambda}-\frac{1}{\tan \lambda}\right)$, ja $\chi(\lambda)=\frac{24}{\lambda^{3}}\left(\tan \frac{\lambda}{2}-\frac{\lambda}{2}\right)$.
Vedetty sauva:
Extension:
$\phi(\lambda)=\frac{6}{\lambda}\left(-\frac{1}{\sinh \lambda}+\frac{1}{\lambda}\right), \psi(\lambda)=\frac{3}{\lambda}\left(-\frac{1}{\lambda}+\frac{1}{\tanh \lambda}\right)$, ja $\chi(\lambda)=\frac{24}{\lambda^{3}}\left(-\tanh \frac{\lambda}{2}+\frac{\lambda}{2}\right)$,

$$
\bar{M}_{12} \equiv M K_{1}
$$

$\bar{M}_{i j}, \bar{M}_{j i}$

The stiffness equation relating the end-moments to the end-displacements

One node is hinged

If you are using lecture's notations
The is a superscript " 0 " means that the support at end j is hinged

$$
\begin{aligned}
& M_{i j}^{0}=a_{i j}^{0} \varphi_{i j}-c_{i j}^{0} \psi_{i j}+\bar{M}_{i j}^{0} \\
& \quad a_{12}^{0}=c_{12}^{0}=\frac{3 E I}{L} \psi_{i j}=\left(v_{j}-v_{i}\right) / L \\
& \bar{M}^{0} \quad q / W \text { IV) }
\end{aligned}
$$

Fixed end-moment resulting from external mechanical loading, look from tables

If you are using Krenk's textbook notations

$\frac{1}{12} p^{2} \xrightarrow[p]{p} \frac{1}{12 p} p^{2}$

Maxwell-Mohr integrals table

