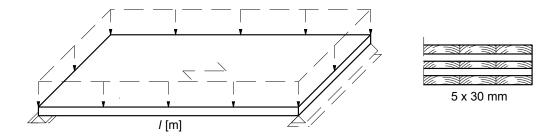
CIV-E 4120 Timber Structures

Examination date 11.12.2020

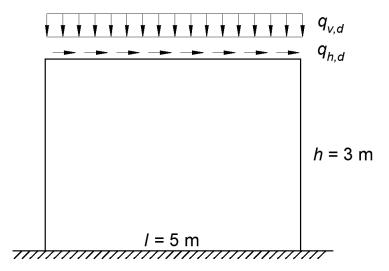
General


- Write clearly on every paper you hand in: the code and name of the course, the date of the exam, your full name, your student number and your signature.
- Write clear and show intermediate steps.
- If some intermediate results are missing, choose an assumption (make a clear mark!) and continue the calculation.
- Use the material properties given in the appendix.
- Each student has individual input variables:

Input variables – select according to your student no.

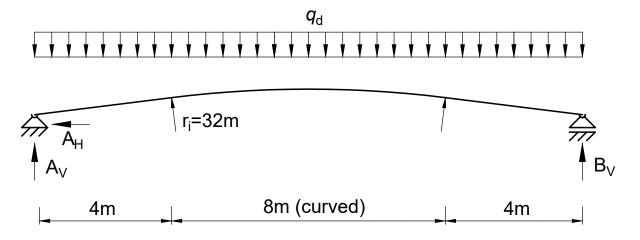
Student No.	No. Question 1		Question 2		Que	Question 3	
	l [m]	$q_d [\mathrm{kN/m^2}]$	$q_{\mathrm{v,d}} \; [\mathrm{kN/m}]$	$q_{\mathrm{h,d}} \; [\mathrm{kN/m}]$	b [mm]	$q_{\rm d}~[{\rm kN/m}]$	
800967	7	8	480	120	200	16	
425999	6	9	450	110	180	15	
527363	6.5	9	500	100	160	14	

Question 1


A CLT slab (use the length l from the Table) is loaded with a uniformly distributed design load $q_{\rm d}$ (Table).

- a.) Choose the more efficient orientation of the slab. (0.5 point)
- b.) Calculate the bending stiffness of the CLT slab. Use $E_0 = 11000$ MPa and $E_{90} \approx 0$ MPa. (3 points)
- c.) Check the relevant ULS requirements. Use $f_{\rm m,CLT,d}=16$ MPa, $f_{\rm v,CLT,d}=1.9$ MPa, $f_{\rm r,CLT,d}=0.8$ MPa. (5 points)
- d.) Schematically illustrate the ULS stresses over the cross-section. Highlight the maximum stresses (bending, shear, rolling shear) in the illustration. (2 points)
- e.) Propose a more efficient layup for the specific load situation (the total slab thickness should not change), illustrate it's ULS stresses and compare them with d.). (2 points)

Question 2


A CLT wall (use the CLT setup from Question 1) is loaded with $q_{\rm v,d}$ and $q_{\rm h,d}$ (use the values from the Table). Use the material properties from the table in the appendix, assume that the timber boards are 100 mm wide.

- f.) Choose the more efficient orientation of the CLT plate. (0.5 point)
- g.) Check the compressive strength and the shear strength. (4 point)

Question 3

A curved glulam beam (strength GL32h, constant height: h=1000 mm, lamella thickness t=35 mm, width: b (Table)) is loaded with a uniformly distributed design load $q_{\rm d}=16$ kN/m. Load-duration class Medium-term and Service class 2 apply.

- h.) Schematically illustrate the stresses perpendicular to grain. (1 points)
- i.) Check the all ULS requirements of the beam (instability is prevented). (8 points)

Assume that the tensile stress perpendicular to grain are too large (assume $\sigma_{t,90,d} = 0.3$ MPa) and reinforcement for the apex zone is required. Reinforce the beam by using glued in rods: Diameter of the rod d = 10 mm (assume the entire area for the calculation), yield strength of the rod $f_y = 235$ MPa,

- j.) Design the reinforcement for the apex zone of the beam.(4 points)
- k.) Illustrate the reinforcements (incl. position, length, orientation). (1 points)

Appendix

 k_{mod} for Solid timber, GLT, LVL, Plywood

Load-duration class	Service class			
	1	2	3	
Permanent	0.60	0.60	0.50	
Long-term	0.70	0.70	0.55	
Medium-term	0.80	0.80	0.65	
Short-term	0.90	0.90	0.70	
Instantaneous	1.10	1.10	0.90	

Characteristic values – GLT

			·	Strengtl	n classes	
For softwood GLT – homogeneous lay-up			GL20h	$\mathrm{GL}24\mathrm{h}$	GL28h	GL32h
Strength	Bending	$f_{ m m,g,k}$	20	24	28	32
properties	Tension parallel	$f_{ m t,0,g,k}$	16	19.2	22.3	25.6
MPa	Tension perpendicular	$f_{ m t,90,g,k}$	0.5	0.5	0.5	0.5
	Compression parallel	$f_{ m c,0,g,k}$	20	24	28	32
	Compression perpendicular	$f_{ m c,90,g,k}$	2.5	2.5	2.5	2.5
	Shear	$f_{ m v,g,k}$	3.5	3.5	3.5	3.5
	Rolling shear	$f_{ m r,g,k}$	1.2	1.2	1.2	1.2
Stiffness	Mean modulus of elasticity parallel	$E_{0,g,\mathrm{mean}}$	8.4	11.5	12.6	14.2
properties	5% modulus of elasticity parallel	$E_{0, g, 05}$	7.0	9.6	10.5	11.8
[GPa]	Mean modulus of elasticity perpendicular	$E_{90,g,\mathrm{mean}}$	0.30	0.30	0.30	0.30
	5 % modulus of elasticity perpendicular	$E_{90,g,05}$	0.25	0.25	0.25	0.25
	Mean shear modulus	$G_{ m g,mean}$	0.65	0.65	0.65	0.65
	5% shear modulus	$G_{ m g,05}$	0.54	0.54	0.54	0.54
	Mean rolling shear modulus	$G_{ m r,g,mean}$	0.065	0.065	0.065	0.065
	5~% rolling shear modulus	$G_{ m r,g,05}$	0.054	0.054	0.054	0.054
Density	Density	$ ho_{ m k}$	340	385	425	440
$[kg/m^3]$	Mean Density	$ ho_{ m mean}$	370	420	460	490

Material properties for the CLT wall [MPa]

Property	Symbol	value
Compressive strength parallel to grain Shear strength parallel to grain Torsional shear strength	$f_{ m c,0,d} \ f_{ m v,CLT,d} \ f_{ m T,CLT,d}$	19 3.5 1.8

Characteristic strength properties of the bond-line of reinforcements

Strength [MPa]	Effective bound length $l_{\rm ad}$ [mm]				
	≤ 250	$250 < l_{\rm ad} \le 500$	$500 < l_{\rm ad} \le 1000$		
$f_{ m k1,d}$	4.0	$5.25 - 0.005 \cdot l_{\rm ad}$	$3.5 - 0.0015 \cdot l_{\rm ad}$		
$f_{ m k2,d}$		0.75			
$f_{ m k3,d}$		1.50			