Aalto University

Björn Ivarsson, 050-4067 832

Exam, Monday February 22nd 2021, 13:00-17:00

Complex Analysis, MS-C1300
Motivate your answers. Only giving answers gives no points.
See exam instructions here:
mycourses.aalto.fi/course/view.php?id=29625\§ion=7
(1) (a) Let $z=x+i y \in \mathbb{C}$. Determine $v(x, y)$ so that

$$
\begin{equation*}
f(z)=x^{2}-y^{2}+x+i v(x, y) \tag{3p}
\end{equation*}
$$

is analytic. Justify your answer.
(b) Let $z=x+i y \in \mathbb{C}$ and $U=\{z \in \mathbb{C} ; x>0\}$. Is

$$
f(z)=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)+i \arctan \left(\frac{y}{\sqrt{x^{2}+y^{2}}}\right)
$$

analytic in U ? Justify your answer.
(2) Let $a \neq 0$ be a complex number.
(a) Find the Taylor series of

$$
f(z)=\frac{z}{z+a}
$$

around $z_{0}=0$. Determine the radius of convergence ρ for the series.
(b) Find the Laurent series of

$$
\begin{equation*}
f(z)=\frac{z}{z+a} \tag{2p}
\end{equation*}
$$

in $\{z \in \mathbb{C} ;|a|<|z|<\infty\}$.
(c) Find the Taylor series of

$$
f(z)=\frac{z}{z-2 a}
$$

around $z_{0}=a$. Determine the radius of convergence ρ for the series.
(3) Let $a>0$ be a real number. Calculate

$$
\int_{0}^{\infty} \frac{\cos x}{x^{2}+a^{2}} d x
$$

(4) Let $a>0$ be a real number. Determine all poles z_{k} of

$$
f(z)=\frac{z}{e^{a z}-1}
$$

and also determine the order of the poles. Calculate the residues $\operatorname{Res}\left(z_{k}, f\right)$.
($6 p$)

Good luck!

