Exam

This is a remote exam to be done independently. Team work is strictly forbidden. Detailed instructions are available in MyCourses. The exam contains 4 problems each worth 6 points.

1. Let $\left(X_{0}, X_{1}, X_{2}, \ldots\right)$ be a discrete-time Markov chain in state space $\{-1,0,+1\}$ with initial distribution $\pi=\left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right]$ and transition matrix

$$
P=\left[\begin{array}{ccc}
\frac{2}{3} & \frac{1}{3} & 0 \\
0 & \frac{2}{3} & \frac{1}{3} \\
\frac{1}{3} & 0 & \frac{2}{3}
\end{array}\right]
$$

having rows and columns indexed using $-1,0,+1$. Which of the following are Markov chains? For those which are, write down the state space and transition matrix. For those which are not, explain carefully why.
(a) $A_{t}=X_{2 t}$,
(b) $B_{t}=2 X_{t}^{3}$.
(c) $C_{t}=3 X_{t}^{2}$.
2. Two computer algorithms called muGo and nuGo compete in a go tournament where the winner is declared to be the one who first wins two consecutive games in a row. Due to more powerful computing hardware, muGo is expected to win each game with probability $p=0.75$, independently of other games. The state of the tournament after t rounds is denoted by $\left(M_{t}, N_{t}\right)$ where M_{t} equals the number of consecutive games won by muGo, and N_{t} is the corresponding number for nuGo.
(a) Model the state of the tournament as a Markov chain on a finite state space, draw its transition diagram, and write down its transition matrix.
(2 p)
(b) What is the probability that muGo wins the tournament?
(c) Does the Markov chain have an invariant distribution? If yes, how many?
3. Cars of type $i=1,2$ arrive to a one-way street at random time instants with expected interarrival times of ℓ_{i} minutes $\left(\ell_{1}=3, \ell_{2}=10\right)$. The street has one parking space. If an arriving car finds the space vacant, the car parks there immediately. Otherwise the car drives away. A car of type i remains parked for an expected duration of m_{i} minutes ($m_{1}=5$, $m_{2}=20$). The interarrival times and parking times of type- i cars are mutually independent and exponentially distributed. In addition, type-1 cars behave independently of type-2 cars. Currently the parking space is vacant.
(a) Model the state of the parking space as a continuous-time Markov chain. Draw the transition diagram and write down the generator matrix of the chain.
(b) Determine the probability that the parking space is vacant in steady state.
(c) Explain how you can compute with the help of a computer the probability that the parking space is vacant after 30 minutes from now.
(d) What is the probability that at least 2 cars arrive to the street during the 5 -minute time interval starting after one hour?
(1 p)
4. In a market dominated by two companies, the relative market share of company A is denoted by $X_{t}=\frac{M_{t}}{M_{t}+N_{t}}$ where M_{t} and N_{t} denote the subscriber counts of company A and company B in the end of week t. In the beginning, company A has $M_{0}=7$ subscribers and company B has $N_{0}=6$ subscribers. During each week $t=1,2, \ldots$ one new person arrives and becomes a subscriber of company A with probability X_{t-1} and a subscriber of company B otherwise.
(a) Is $\left(X_{t}\right)$ a martingale? Prove your answer by a rigorous mathematical reasoning.
(b) What is the expected relative market share of company A in the end of week 2 ?
(c) Prove that the probability that the relative market share of company A ever reaches level 0.9 is at most 0.6.

