
CS-E4830 Kernel methods in machine learning, exam date
08.09.2021 / Examiner: Rohit Babbar
Instructions: You have 4 hours to complete exam. Scan (or take a picture) and send your answer
sheets by 18:00pm today (08.09.2021). This is an open book exam but no additional material
apart from the lecture videos/slides can be used. Consulting others to write your answers is not
allowed. There are 10 questions for a total maximum of 50 points.

Questions
Q.1 (8 points) Give short (a few sentences) definitions or appropriate description of the following

concepts.

(a) Kernel functions

(b) Complementary slackness

(c) Union Bound

(d) Multiple Kernel Learning

Q.2 (4 points) Explain the computational advantages of using a polynomial kernel of degree two
as compared to using bigram features. Under what conditions using the features directly
might be more beneficial?

Q.3 (6 points in total) Assume we have the kernels km(xi,xj) = 〈φm(xi),φm(xj)〉,m =
1, . . . , P at our disposal, where φm(x) = (φ1m(x), . . . , φDm(x))T ∈ RD is the feature
vector underlying the kernel km.

For each kernel below, write down the equation for the underlying feature vector φ̃s(x), as
a function of the feature vectors φm,m = 1, . . . , P , so that k̃s(xi,xj) = 〈φ̃s(xi), φ̃s(xj)〉 is
satisfied for each s ∈ {a, b}.

(a) (2 points) k̃a(xi,xj) =
∑P
m=1 km(xi,xj)

(b) (4 points) k̃b(xi,xj) = (k1(xi,xj) + 1)2

Q.4 (4 points) Check if K(x, x′) = max(x, x′) such that x, x′ ∈ R+ is a valid kernel or not. If
yes, prove it; give a counter-example otherwise.

Q.5 (5 points) State Representer theorem and discuss its implications for computing the pre-
diction function values at training points f(xi) and regularizer ||f ||2H for solving ERM
problems such as Kernel SVM and Kernel logistic regression.

Q.6 (6 points) Recall the formulation for Kernel Logistic Regression

min
ααα∈RN

1

N

N∑
i=1

log(1 + exp(−yi[Kααα]i)) +
λ

2
αααTKααα

Show that the objective function is convex in ααα.



Q.7 (7 points) The primal optimization problem for linear SVM formulation with squared Hinge
loss (max(0, 1− ywTx))2 as the loss function is given by

min
w,ξ

λ

2
||w||2 +

N∑
i=1

ξ2i

s.t. yi(wTxi) ≥ 1− ξi, i = 1, . . . , N

Using the method of Lagrange multipliers, derive the dual of the above problem.

Q.8 (5 points) Write the formulation of Principal Component Analysis and show how it is
related to eigen value problem involving co-variance matrix. Is the optimization problem
convex. Explain your answer.

Q.9 (5 points) State Bochner theorem and explain how it can be used for addressing machine
learning problems with large number of training samples in the context of kernel methods.


