CS-E4830 Kernel methods in machine learning, exam date 08.09.2021 / Examiner: Rohit Babbar

Instructions: You have 4 hours to complete exam. Scan (or take a picture) and send your answer sheets by 18:00pm today (08.09.2021). This is an open book exam but no additional material apart from the lecture videos/slides can be used. Consulting others to write your answers is not allowed. There are 10 questions for a total maximum of 50 points.

Questions

Q. 1 (8 points) Give short (a few sentences) definitions or appropriate description of the following concepts.
(a) Kernel functions
(b) Complementary slackness
(c) Union Bound
(d) Multiple Kernel Learning
Q. 2 (4 points) Explain the computational advantages of using a polynomial kernel of degree two as compared to using bigram features. Under what conditions using the features directly might be more beneficial?
Q. 3 (6 points in total) Assume we have the kernels $k_{m}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left\langle\phi_{m}\left(\mathbf{x}_{i}\right), \phi_{m}\left(\mathbf{x}_{j}\right)\right\rangle, m=$ $1, \ldots, P$ at our disposal, where $\phi_{m}(\mathbf{x})=\left(\phi_{1 m}(\mathbf{x}), \ldots, \phi_{D m}(\mathbf{x})\right)^{T} \in \mathbb{R}^{D}$ is the feature vector underlying the kernel k_{m}.
For each kernel below, write down the equation for the underlying feature vector $\tilde{\phi}_{s}(\mathbf{x})$, as a function of the feature vectors $\phi_{m}, m=1, \ldots, P$, so that $\tilde{k}_{s}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left\langle\tilde{\phi}_{s}\left(\mathbf{x}_{i}\right), \tilde{\phi}_{s}\left(\mathbf{x}_{j}\right)\right\rangle$ is satisfied for each $s \in\{a, b\}$.
(a) (2 points) $\tilde{k}_{a}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\sum_{m=1}^{P} k_{m}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
(b) (4 points) $\tilde{k}_{b}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(k_{1}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)+1\right)^{2}$
Q. 4 (4 points) Check if $K\left(x, x^{\prime}\right)=\max \left(x, x^{\prime}\right)$ such that $x, x^{\prime} \in \mathbb{R}^{+}$is a valid kernel or not. If yes, prove it; give a counter-example otherwise.
Q. 5 (5 points) State Representer theorem and discuss its implications for computing the prediction function values at training points $f\left(x_{i}\right)$ and regularizer $\|f\|_{\mathcal{H}}^{2}$ for solving ERM problems such as Kernel SVM and Kernel logistic regression.
Q. 6 (6 points) Recall the formulation for Kernel Logistic Regression

$$
\min _{\boldsymbol{\alpha} \in \mathbb{R}^{N}} \frac{1}{N} \sum_{i=1}^{N} \log \left(1+\exp \left(-y_{i}[K \boldsymbol{\alpha}]_{i}\right)\right)+\frac{\lambda}{2} \boldsymbol{\alpha}^{T} K \boldsymbol{\alpha}
$$

Show that the objective function is convex in $\boldsymbol{\alpha}$.
Q. 7 (7 points) The primal optimization problem for linear SVM formulation with squared Hinge loss $\left(\max \left(0,1-y \mathbf{w}^{T} \mathbf{x}\right)\right)^{2}$ as the loss function is given by

$$
\begin{array}{ll}
\min _{\mathbf{w}, \boldsymbol{\xi}} & \frac{\lambda}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{N} \xi_{i}^{2} \\
\text { s.t. } & y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}\right) \geq 1-\xi_{i}, \quad i=1, \ldots, N
\end{array}
$$

Using the method of Lagrange multipliers, derive the dual of the above problem.
Q. 8 (5 points) Write the formulation of Principal Component Analysis and show how it is related to eigen value problem involving co-variance matrix. Is the optimization problem convex. Explain your answer.
Q. 9 (5 points) State Bochner theorem and explain how it can be used for addressing machine learning problems with large number of training samples in the context of kernel methods.

