Duration: $3 \mathrm{~h}+$ additional $2 \times 15 \mathrm{~min}$ You should return scanned hand written answers as in a contact exam in a good pdf-fquality

\section*{It is compulsory to solve only THREE (3) EXERCISES that you choose freely: only three best exercises (answers) will be graded even if the student solves four.
 1) Results given without shown the logical steps needed to achieve them will be ignored even if correct. 2) Sequentially number (numeroi juoksevasti) your answer papers $1(n) \ldots$... n), where $n=$ total number of pages 3) Write readably your name, family name and student number.
 4) Name the pdf-file: Studdent_ID_Name_Date.pdf Make a good quality scanned pdf 5) All additional material, like listings, graphs can be appended as pdfs to the answer 6) Please check the physical rents of your answers.
 | Exam, noints | | Grade |
| :---: | :---: | :---: |
| $\geqslant 13,75$ | | 5 |
| 12,75 | 13,5 | 4 |
| 9,75 | 12,5 | 3 |
| 8,25 | 9,5 | 2 |
| 7 | 8 | 1 |
| <7 | | $f_{\text {ai }}=0$ |

Examination 26/10/2021

The material is linear elastic in all the structures below

1. Use the dummy unit-load theorem (or method) and determine the horizontal displacement at roller C [3 point]. Account for both the effects of bending and axial forces when computing displacement. Ignore the shear effects. [overall $=5$ points]

Hints: is it statically determined? Determine support reactions
Then determine and draw accurately the bending moment [1 point] and axial
force [1 point] diagrams
2. Use the general force method and
a) determine the bending moment at support A [3 points] and draw accurately the bending moment diagram [1 point]. Account only for effects of bending
b) Determine the support reaction at C (value and direction). [1 p].

3. Use Slope-Deflection Method and
a) determine the bending moment at clamping support 1 [4 points]
b) use results from question a) and determine the horizontal displacement at roller 4 [1 point] (all other methods are welcomed for evaluating the displacement)

Hint a): If you wish you can use the stiffness-moment relation for hinged beams where appropriate

4. Buckling of sway-frames

The Frame is loaded symmetrically with by two concentrated loads P. Use Slope-Deflection Method and 1) derive the explicit expression, in terms of Berry's stability functions, of the needed criticality condition for determining the critical buckling load P [3 points]. Hint: assume anti-symmetric buckling mode
2) solve numerically for the value of the buckling load \boldsymbol{P} [1 point].
3) Give a bracket for the value of buckling load using cleverly the Euler's basic cases (see tables in the formulary) [1 point].

Euler's basic buckling cases Eulerin perusnurjahdus

$M_{i j}=A_{i j} \phi_{i j}+B_{i j} \phi_{j i}-C_{i j} \psi_{i j}+\bar{M}_{i j} \quad M_{i j}^{0}=A_{i j}^{0} \varphi_{i j}-C_{i j}^{0} \psi_{i j}+\bar{M}_{i j}^{0}$
Beam-column with constant flexural rigidity:

$$
\begin{aligned}
& A_{j}=A_{j}=\frac{2 \psi(k L)}{4 \psi^{2}(k L)-\phi^{2}(k L)} \frac{6 E I}{L} \quad B_{i}=B_{j i}=\frac{\phi(k L)}{4 \psi^{2}(k L)-\phi^{2}(k L)} \frac{6 E I}{L} \\
& C_{i j}=A_{i j}+B_{i j}, \quad A_{i j}^{0}=C_{i j}^{0}=\frac{1}{\psi(k L)} \frac{3 E I}{L}, \\
& \text { Berry's functions: } \\
& \text { Olkoon } \lambda \equiv k L \text {, } \\
& \lambda \equiv k L \\
& \text { Puristettu sauva: }
\end{aligned}
$$

Compression:
$\phi(\lambda)=\frac{6}{\lambda}\left(\frac{1}{\sin \lambda}-\frac{1}{\lambda}\right), \psi(\lambda)=\frac{3}{\lambda}\left(\frac{1}{\lambda}-\frac{1}{\tan \lambda}\right)$, ja $\chi(\lambda)=\frac{24}{\lambda^{3}}\left(\tan \frac{\lambda}{2}-\frac{\lambda}{2}\right)$.
Vedetty sauva:
Extension:
$\phi(\lambda)=\frac{6}{\lambda}\left(-\frac{1}{\sinh \lambda}+\frac{1}{\lambda}\right), \psi(\lambda)=\frac{3}{\lambda}\left(-\frac{1}{\lambda}+\frac{1}{\tanh \lambda}\right)$, ja $\chi(\lambda)=\frac{24}{\lambda^{3}}\left(-\tanh \frac{\lambda}{2}+\frac{\lambda}{2}\right)$,

$$
\bar{M}_{12} \equiv M K_{1} \quad \bar{M}_{i j}, \bar{M}_{j i}
$$

The stiffness equation relating the end-moments to the end-displacements

If you are using lecture's notations

One node is hinged

The is a superscript " 0 " means that the support at end j is hinged

No hinge

$M_{i j}=a_{i j} \varphi_{i j}+b_{i j} \varphi_{j i}-c_{i j} \psi_{i j}+\bar{M}_{i j}, \quad i \neq j$
$a_{i j}=\frac{4 E I}{L}, b_{i j}=\frac{2 E I}{L}, c_{i j}=\frac{6 E I}{L} \quad$ (EI-constant)

Fixed end-moment resulting from external mechanical loading, look from tables

If you are using Krenk's textbook notations
Bending Moments (pay attention to the sign convention to convert to Fixed-End-Moments)

$\frac{1}{12} p \ell^{2}$

$\frac{5}{8} p \ell \frac{1}{1} \ell \longrightarrow$

$$
\begin{aligned}
& M_{i j}^{0}=a_{i j}^{0} \varphi_{i j}-c_{{ }_{i j}}^{0} \psi_{i j}+\bar{M}_{i j}^{0} \\
& \quad a_{12}^{0}=c_{12}^{0}=\frac{3 E I}{L} \psi_{i j}=\left(v_{j}-v_{i}\right) / L \\
& \bar{M}_{i j}^{0} \because / 2, ~ q(x)
\end{aligned}
$$

Fixed end-moment resulting from external mechanical loading, look from tables

If you are using Krenk's textbook notations

$$
\square
$$

Maxwell-Mohr integrals table
thbleau des intecrales $\int_{0}^{l} i M^{k} M d x$

