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Examination 26/10/2021

The material is linear elastic in all the structures below

1. Use the dummy unit-load theorem (or method) and determine the
horizontal displacement at roller C . Account for both the effects of
bending and axial forces when computing displacement. Ignore the shear

effects. ET —ura.l”

Hints: is it statically determined? Determine support reactions

Then determine and draw accurately the bending moment and axial
force diagrams

2. Use the general force method and

a) determine the bending moment at support A and draw

accurately the bending moment diagram

. Account only for

effects of bending = .
. ) A -
b) Determine the support reaction at C zZ 5 B
A E vl
@ ©) @

— — =~ —)
3. Use Slope-Deflection Method and ﬁr‘r LETT ‘ 3EL7
a) determine the bending moment at clamping support 1 [4 points] I ‘_ 1
b) use results from question a) and determine the horizontal .k :EI ) Ja
displacement at roller 4 [1 point] (all other methods are welcomed for ' */
evaluating the displacement) } 1 0

N g /
Hint a): I you wish you can use the stifiness-moment relation for hinged beams where appropriate / 3a 77;\77 da
= .

4. Buckling of sway-frames
The Frame is loaded symmetrically with by two concentrated loads P. @ ; = @
Use Slope-Deflection Method and 1) derive the explicit expression, in terms of -
Berry’s stability functions, of the needed criticality condition for determining the
critical buckling load P Hint: assume anti-symmetric buckling mode ! .
2) solve numerically for the value of the buckling load P d
3) Give a bracket for the value of buckling load using cleverly the Euler’s basic
cases (see tables in the formulary) ~ 1
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Euler's basic buckling cases Eulerin perusnurjahdus

P it
, i f
: l '
‘ 23
P P P
1 2 3 )
w_| oz 2066 4 1
F ------------------------------------------------- 1

Mij = Aijbi; + Bijdii — Cithij + M M) =Ap, -Ciy, + A_J;’
Beam-column with constant flexural rigidity:
L, D) 6’ . )  6HI
4T sm L T T ) L

1 3EI

C, =4y +B, A=c0=—)1 3E
i =4 +B;. 4 =G va) L. =g L
ovVa. awn. (o) &’u/\l\.y,J\ &4)‘ = B‘o EI

Berry’s functions: N

I Olkoon A =KL, P

Puristettu sauva:

6(_1 1 3(1 1) . 2( A A
Compression: #4)=7 nd I)» y(@d)= I(I -m} 5 x@4)= F(tan; -3}

Extension:

Ji

N=-N,—-N_.>0
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The stiffness equation relating the end-moments FOne node is hinged |
to the ean‘-_displacements : The is a superscript “0” means that the
"~ If you are using lecture’s notations  support at end j is hinged
*_ : 0_ _0_ _ 0 70
2\"" =(v;=v)/L Mii =8P —C Yy +Mii
0 o 3EI
______ alz =Clz =T WU=(VJ—V,)/L

Vi a(x) '
RIC I
§ = 050y + 005 =€y + My, 1%

Fixed end-moment resulting from external
ol o PE c.= gEl (El-constant) mechanical loading, look from tables

g P p
g1e

Fixed end-moment resulting from external
mechanical loading, look from tables

If you are using Krenk’s textbook notations




Maxwell-Mohr integrals table

. .
TABLEAU DES INTEGRALES J ‘M*Mdx
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2 % exam 26.10.2021

det K()\)

Solving graphically for the smallest eigenvalue = critical buckling load

100 . | . .

A= kL

3 %

4 — clear

5|= clc

6

7= EI per L = 1; % EI/L is factorized out of the determinant
8 % EI/L * det (K) = 0;
9 % we compute det (K)

LO %

11l |= lam = 0.001:1/1000:8;

L2 - determ = zeros(size(lam)):

L3

14— [lfor i = l:length(lam)

L5

L6 — [FI, PSI] = Berry(lam({i}): %———— returns Berry's functions
L7 = D=4 * pPSI .* PSI - FI .* FI;

L8

19— |A 12 = 2%6 * PSI ./ D;

20— |B12= 6 * FI ./ D;

21l = C 12 =2A12 + B 12;

22 - - -

35 |= c_23 = 67

24 — K11 =A 12 + c_23:

%— | K12 = - C 12;

26 — K 21 = K 12;

7] = K 22 = 2% C 12 - lam(i) .* lam(i):

28

bE) | = K= [K11 K 12

30 K 21 K 22]:

31

32 — determ(i) = det(K)

33—  -end

35|= figure

36 — plot(lam, determ)

3T |= grid on

38 — axis ([0 9 -100 100])

39
11 function [FI, PSI] = Berry(lam)

2 % yhdistetty puristetus Jja taivutetus

3 % combined axial compression and bending
4 - FI =6.0* (-1 ./ lam + 1 ./ sin{lam) ) ./ lam;
5= PST = 3.0 * (+1 ./ lam - 1 ./ tan(lam) )} ./ lam;
6 — return

oo

g o

EI/L is factorized out of the determinant
EI/L * det (K) = 0:
we compute det (K)

| det LS)??‘(A‘( %)ﬂag)(_%"'a',/ﬁflf‘a A




Structural dynamics Djebar BAROUDI - (2021)

is obtained. Finally, equation (148) can be written in a no-dimensional form
for the long-waited-for interaction diagram

<°J”>2=1— - (151)

w Pcr,n

The graph (Fig. ?7). of this relation cannot be simpler: a straight line
going from value 1 to value 1. Note that the graph may be curved for other
boundary conditions.

3 Stability analysis of a sway frame

In the following both static and dynamic approach will be shown with an
application example of a sway® simple frame (Fig. 9).

Civil and mechanical engineers use the term of stability loss for a transi-
tion of the structure from one equilibrium state to another under the same
loading. The new equilibrium configuration can be relatively close or far
from the initial one. In the case of close neighbouring equilibrium, it is often
question of bifurcational loss of stability (when many solutions appear for the
same loading), like for example, column buckling. When the new equilibrium
configuration is relatively far, it is often question of ’snap-through’-like loss
of stability of a shallow arch, for instance. In this case, the transition occurs
through a limit point. The number of solutions remains one.

Anyway, what I wanted to tell is that loss of equilibrium is by nature a
dynamic phenomena where the ’excess’ of input energy is dissipated as kinetic
energy. For conservative systems some crucial aspects of the stability loss,
like finding buckling load and modes, can be treated as static stability loss>!.

3.1 Static stability

Here the classical displacement method is used in its simplest form that civil
engineers call slope deflection method®?. The geometric non-linearity is intro-
duced while solving deflections for combined axial forces and bending. This
way, the obtained stiffness matrix depends non-linearly on the amount of
compression (or tension).

In this example, there is two lower 1st and 2nd buckling modes: anti-
symmetric and symmetric one. The anti-symmetric will give the lowest buck-
ling load. For shortness, we consider here only the anti-symmetric mode. The
symmetric mode is left for the student to train and show that, effectively, it

30Givusiirtyvé kehs tai myos sivullesiirtyvé kehs (FI)

31There is a good concise course on stability of structures in the department of civil
engineering in Otaniemi (Aalto university).

32Kulmanmuutosmenetelms (FI)

47
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gives a higher buckling load. The reader have not to believe me. Check!
However, I do not tell lies.

T A kT sl
f i tag

B Q?: <’—I

T 3=l 6—/’ % _F;.cg,,_,
Q,}t‘ b) shear forces :

o ?MC” L")“

T t_/ ""\L
n}JUIntend maments d
= ]| . l[; _
[ ] T
Ny=-7
GJF | i
d) |'I'Ililﬂ| stressss lamal iur‘ce] are
a) hnti-symmetric buckling mode (post-buckled state) defined in the pre-buckled state.

Figure 9: Buckling of a sway frame into anti-symmetric mode.

3.1.1 Buckling as an eigenvalue problem

Recall the reader that equilibrium equations are written in the slightly post-
buckled configuration. The axial stresses (or more exactly, the initial stresses)
are determined in the pre-buckled configuration close to buckling (Fig. 9d)
as a consequence of the ’linearisation’ of the geometrically non-linear equa-
tions of equilibrium at the buckling load (= bifurcation point) keeping up to
quadratic terms in Taylor series.

Kinematics and equations of equilibrium: Assuming the anti-symmetric
buckling mode (Fig. 9a) we have two kinematic independent unknowns,
namely, ¢ and v defined as

P21 = P23 = P32 = P34 = ¢ (152)
o1 =P34 = (153)
where the remaining end-rotations (geometric boundary conditions)
P12 = a3 =0 (154)
and rigid-body rotations
oz = 0. (155)

Since there is two independent kinematic degrees of freedom (dofs), we need
two independent equilibrium equations in which these dofs appear (Fig. 9b
and c).

48



Structural dynamics Djebar BAROUDI - (2021)

Consequently, the sufficient equilibrium equations are

Moy + Mos =0 (156)
Q21 + Q34 =0 = Q21 =0 (157)
NS

=Q21, symmetry

Note that, by symmetry, we have Q34 = (J21. In addition, it is the above
equilibrium equations (Eqs. 156) and 156) that will result in the eigenvalue
problem

K()\) - v =0, where v = [¢, 1|* (158)

which solutions (A, v(2x1)) provide the buckling load A¢; and the correspond-
ing mode v. The parameter A is the loading parameter, in general. In par-
ticular, here, A\ = ¢\/P/FEI. So, everything is said. What follow are technical
steps to form the stiffness matrix Ky2).

Pre-stress: The stiffness matrix depend on the axial force for a beam-
element under combined compression (tension) and bending. The end-moments
and end-rotations are related by stiffness relations. These stiffness-coefficients
A;j, Bij and C;j depend non-linearly on the axial force. The axial stress (or
forces) in the bars are to be defined in the pre-buckled configuration prior
buckling (Fig. 9d).
So,
NQl = N34 = —P, and N23 =0 (159)

The needed end-moments are

M1 =A21(Nat)ga1 + B21(N21)@—021(N21)¢21 (160)
=0

=A21(Na1)p — Co1(Nar) (161)

Moz =agzpo3 + baz P32 —ca3 P23 = (a3 + b23)d = ca3¢ (162)

M2 =Bi2(N12)¢ — Ci2(N12)y (163)

Finally, moment equilibrium equation (Eq. 156) results in

[A21(P) + cas]¢ — Co1(P)yp = 0 (164)

The 1st equilibrium equation

Expressing equilibrium equation (Eq. 157)3 in terms of end-moments
(9b) we obtain:

P-Yl+ Mo+ Mpo+Qo=0 = —Qo1=P-9Pl+ Mo +M5=0 (165)

The 2nd equilibrium equation

33This equation is known as the shear equation.
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Now you need to express the end-moments as function of end-displacements.
Then writing the two equilibrium equations into matrix form we obtain, fi-
nally,
A21(>\) + Cco3 —021()\) 10} . 0 (166)
~Co1(N)  =X2EI/t+2C12(N\)| || — |0

=K()\)

The above equation is the eigenvalue problem®* that provides the buckling
load as the smallest eigenvalue and the corresponding eigenvectors as the
buckling mode. Note that in the above stiffness matrix, the term EI/¢ can
be factorised out allowing to find numerically eigenvalues as function of the
load parameter A or to solve directly (graphically) for the smallest root.

Now buckling occurs when we have a non-trivial solution. Therefore, the
condition

det{K(\)} =0 (167)
is known as criticality condition, and provides the critical buckling load as
Aer = 2.716 = P, = 0.7487°E1 /(2. (168)

The first root of the criticality (non-linear) condition was determined graph-
ically (Fig. 10).

o 1 2 27165 4 5 -]
A= kL

ol

dat{g Y= (A (N = e FGL0) =0+

Figure 10: Graphical root solving.

34Ominaisarvotehtivi, (FI). Pienin ominaisarvo antaa nurjahduskuorman ja vastaava om-
inaisvektori antaa nurjahdusmuodon.
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3.1.2 The shear equation via virtual work principle

This is the story part: I am actually grading examination in structural me-
chanics. One of the exercises was the buckling of the frame above. I was very
pleased when I found that four students from 77 derived the shear equation
using the virtual work principle. Not only I was personally pleased but also
for the students themselves who learned not only by heart the principle of
virtual work but now they master using it for new, for them, situations. They
have really an additional powerful tool at hand. This is why, I present here,
also the shear equation derived using this principle for the 77-4 students. A
gain, I emphasis that no free-body diagram is needed for that while for deriv-
ing the shear (equilibrium) equation, we need to find the correct free-body
diagram with, sometimes, an explosion (= too much) of the internal forces
at cuts to account for.

The virtual work principle is a poetry of mechanics that, in this particular
example, allows to derive the shear equation without making cuts. It is almost
magic.?> We take the slightly post-buckled configuration as the real state and
the sway-mechanism as the virtual state (Fig. 11). and write

OWint + 0Wext = 0, Vo (169)
The vertical displacement v under the load P is
v =1»(1—cos?) (170)

in which geometric non-linearity is embedded. Non-linearity allow for exis-
tence of multiple equilibrium configurations for the same loading. The result-
ing in a virtual displacement on which the load P will work is

ov = £8inpd) ~ Lo (171)

where the last term is a second order Taylor expansion term (for moderate
rotations) needed to obtain an linearised eigenvalue problem.?¢ Now we can

35Think of the Schrédinger wave-equation of quantum physics (= mechanics). The pri-
mary mathematical objects it operates with (wave functions) are complex vectors in Hilbert
spaces. However, the predictions that this quasi-mystical and mythical wave-equation pro-
vides are real physical objects and processes that are observable. For general knowledge, the
need for Hilbert-spaces in quantum mechanics is not for beauty nor for luxury, or sometimes
used for condensing writing. It is a necessity since the theory will not work if the vector
spaces are not complex Hilbert spaces. Incredible! The virtual work principle sounds almost
as mystical. However, the motion (or equilibrium) equations, that results are real and deal
with physical objects and quantities (coordinates, velocities, ...) that are measurable.

361f you feel that there are many technical subtle details then join the course I give on
stability of structures in spring. It is a condensate of knowledge necessary that helps doing
more safely structural analysis and design. In this course, we start from the beginning and
everything becomes clear or at least clearer then before joining the course. The topics:
Flexural buckling of beams, frames and continuous column-beams, plate buckling, pure
torsional buckling, combined flexural-torsional buckling, lateral torsional buckling, buckling
of cylindrical shells. Taivutusnurjahdus, levyjen ja laatojen lommahdus, vadnténurjahdus,
avaruusnurjahdus, kiepahdus, pyorahdys-symmetristen kuorien lommahdus (FI).

o1
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write using end-moments3”

IWint + Wexs = M1269) + M216v + Msadtp + Myzotp + 2Pov (172)

Win Wext
= 2(Myy + Myy) -6t 4 2Pdv (173)
because of symmetry
=2(Mo + May) - 89 + 2Ppes) = 0, Vo) (174)
= (M2 + M)+ Pyl =0 (175)
(Eq. 157)

And we finally, recover the shear equation of equilibrium (Eq. 157) derived
previously using a physical cut for the free-body diagram without using any
free-body diagrams.

8) Basic sway mechanism as virtual displacementlield

e e S I \“--h_
e e ot 5
{ & Qn\‘ :(‘.1"*\}
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Figure 11: Virtual work principle used to derive equilibrium equations.

Must be noted that the virtual internal work (bending contribution) is
primarily expressed for rigid body motion where relative rotations 6; (or ;)
occurs at discrete locations ¢ is given using the bending moments M; by

IWing = — Z M;60; (176)

3TUsually, virtual work of internal forces, in bending, is written using the bending mo-
ments. note that the definitions of bending and end-moments differ by a sign: M7 = Mo
and Mz = —M21.
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Now for a beam with ends (or nodes) 1 and 2, the relation between bending
moments My, M> and end-moments M5 and My, are defined such that

M1 = Mlg, and M2 = —M21 (177)

Equivalently, for the relative rigid body rotation of the beam 1 — 2 such that
vy —v1 > 0 (consequently, for relative end-rotations such that 6; > 0), we
have for the beam 1 — 2 (Fig. 11)

W = =3 Mid; = —M;y - (—661) —My- 393/ (178)
curvature<0 curvature>0

= — Mlg(—éﬁl) — (—M21)592 = M9 - 6601 + Moy - 664 (179)

In the above result, replace 6 by ¢ to compare with previous formula (Eq.
173).

3.2 Dynamic stability

Here we start to make a mechanical equivalent discrete model then we will
derive the corresponding equations of motion to be time-integrated. This is
the short story. The technical details are now coming so keep your sockets.

3.2.1 Discrete mechanical model

The model is usually called a Hencky-chain model. I will come back soon ...

3.2.2 Slender portal frame

We take as an application example a slender elastic frame with a point load
P on the beam mid-span. The point of application of the load is not exactly
the centre but a slightly on the left in order to break the symmetry. The
load is increased from 0 to a value P few times higher than the corresponding
static buckling load.

The time response of the frame is shown in Figures (12 and 13).

timé [ms] = 0 s b =

Figure 12: Hinged-hinged frame dynamic loss of stability. The load P is a bit de-
centred to cause breaking of symmetry. The amplitude of the load was growing from
0 to quite over the static buckling load.

3.2.3 Enmergy discretisation

Basic on the virtual work principle ...
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Figure 13: Hinged-hinged frame dynamic loss of stability. vertical displacement as
function of time. The amplitude of the load was growing from 0 to quite over the
static buckling load. IN the shaded region, the acceleration get very high brutally.
This corresponds to the first instability when displacements grow suddenly too large.

4 Basic concepts and definitions

The physics: An elastic deformable body 2 is loaded by volume and surface
forces, f and ty on the part of its surface T'y = 9% (Force boundary condi-
tions). The displacements @ of a part of the surface I'y, = 9€2, are constrained
to fixed values iy (Kinematic boundary conditions). The body occupies an
initial configuration at time ¢ = 0 and have an initial velocity. Now the basic
problem is to determine the fields®® of displacement @, strains € and stresses
o. It should be recalled that the strain and the stress fields are tensors. In
our Cartesian space we operate mostly with the their matrix representations
which are known as strain and stress matrices. matrices These fields are time
dependent in dynamics. For static case, the time is not involved. The above
setting is known as the basic problem of elasticity. For static case, just put
the accelerations equal to zero.

38These are called fields (kenttid) because they are functions defined at each point x €
Q € R? where x = (2, y, 2)
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