CIV-E 4120 Timber Structures

Examination date 29.10.2021

General

- Each student has specific input values (see mycourses)
- Answer the question on an empty of squared paper
- ONLY handwritten answers are accepted!
- Write clearly on every paper you hand in: the code and name of the course, the date of the exam, your full name, your student number and your signature.
- Write clear and show intermediate steps.
- If some intermediate results are missing, choose an assumption (make a clear mark!) and continue the calculation.
- Use the material properties given in the appendix.
- Upload a scan or picture from your answer during the examination time (the submission is closed at 12.00)

Question 1

A glulam beam (strength GL24h, length: $l_1 = 5 \text{ m} \& l_2$ (take the value from Table), height: h = 500 mm, width: b = 100 mm) is loaded with a uniformly distributed design load q_d (take the value from Table). Load-duration class Medium-term and Service class 2 apply.

- a.) Calculate the reaction forces and illustrate the internal forces [M], [V], [N]. (3 points)
- b.) Check the bending stresses in the most critical section of the beam.(1 points)

Near the left support a round hole (take the diameter d from Table) will be made.

- c.) Select the closest position of the hole near the support and check it's required dimensions (not reinforced). (2 points)
- d.) Check the all ULS requirements of the beam and the hole (instability is prevented). (7 points)

Reinforce the hole by using glued in rods ($f_y = 235$ MPa). If all ULS requirements of Questions d) are fulfilled assume an higher load.

- e.) Schematically illustrate the reinforcements (incl. position, lenght, orientation) using glued in rods and mark all relevant parameter needed for the design (2 points)
- f.) Select an appropriate diameter for the rods and check the requirements. (4 points)

Question 2

A curved glulam beam (strength GL32h, constant height: h = 800 mm, lamella thickness t = 30 mm, width: b (take the value from the table)) is loaded with a uniformly distributed design load $q_{\rm d}$ (take the value from the table). Load-duration class Medium-term and Service class 2 apply.

- g.) Schematically illustrate the stresses perpendicular to grain. (1 points)
- h.) Check all ULS requirements of the beam (instability is prevented). (8 points)

Question 3

- i.) Name two advantages and two disadvantages of prefabricated modular systems compared to prefabricated panel systems. (1 point)
- j.) Schematically illustrate the stresses perpendicular to grain in the piched cambered beam illustrated below. (2 points)
- k.) Schematically illustrate the reinforcements of the stresses perpendicular to grain using glued in rods in the pitched cambered beam illustrated below. (1 points)

Question 4

A CLT slab (l = 5 m) is loaded with a uniformly distributed design load q_d (take the value from table). All 5 layer of the CLT plate have the same thickness t (take the value from table).

- 1.) Choose the more efficient orientation of the slab. (0.5 point)
- m.) Calculate the bending stiffness of the CLT slab. Use $E_0 = 11000$ MPa and $E_{90} \approx 0$ MPa. (3.5 points)
- n.) Check the relevant ULS requirements. Use $f_{m,CLT,d} = 16$ MPa, $f_{v,CLT,d} = 1.9$ MPa, $f_{r,CLT,d} = 0.8$ MPa. (5 points)
- o.) Illustrate the ULS stresses over the cross-section. Highlight the maximum stresses (bending, shear, rolling shear) in the illustration. (2 points)
- p.) Schematically illustrate the stresses over the cross-section in the an fire event. Assume that only the lowest layer has become inactive. Highlight the maximum rolling shear stresses and the maximum shear stresses. (2 points) Note: No calculation required!

Appendix

			Strength classes			
For softwood GLT – homogeneous lay-up			GL20h	GL24h	GL28h	GL32h
Strength	Bending	$f_{ m m,g,k}$	20	24	28	32
properties	Tension parallel	$f_{\rm t,0,g,k}$	16	19.2	22.3	25.6
MPa	Tension perpendicular	$f_{\rm t,90,g,k}$	0.5	0.5	0.5	0.5
	Compression parallel	$f_{ m c,0,g,k}$	20	24	28	32
	Compression perpendicular	$f_{\rm c,90,g,k}$	2.5	2.5	2.5	2.5
	Shear	$f_{\rm v,g,k}$	3.5	3.5	3.5	3.5
	Rolling shear	$f_{ m r,g,k}$	1.2	1.2	1.2	1.2
Stiffness	Mean modulus of elasticity parallel	$E_{0,g,mean}$	8.4	11.5	12.6	14.2
properties	5~% modulus of elasticity parallel	$E_{0,g,05}$	7.0	9.6	10.5	11.8
[GPa]	Mean modulus of elasticity perpendicular	$E_{90,g,mean}$	0.30	0.30	0.30	0.30
	5~% modulus of elasticity perpendicular	$E_{90,g,05}$	0.25	0.25	0.25	0.25
	Mean shear modulus	$G_{\rm g,mean}$	0.65	0.65	0.65	0.65
	5 % shear modulus	$G_{ m g,05}$	0.54	0.54	0.54	0.54
	Mean rolling shear modulus	$G_{\rm r,g,mean}$	0.065	0.065	0.065	0.065
	5 % rolling shear modulus	$G_{ m r,g,05}$	0.054	0.054	0.054	0.054
Density	Density	$ ho_{\mathbf{k}}$	340	385	425	440
$[kg/m^3]$	Mean Density	$ ho_{ m mean}$	370	420	460	490

Characteristic values – GLT

k_{mod} for Solid timber, GLT, LVL, Plywood

Load-duration class	Service class			
	1	2	3	
Permanent	0.60	0.60	0.50	
Long-term	0.70	0.70	0.55	
Medium-term	0.80	0.80	0.65	
Short-term	0.90	0.90	0.70	
Instantaneous	1.10	1.10	0.90	

Characteristic strength properties of the bond-line of reinforcements

Strength [MPa]	Effective bound length $l_{\rm ad}$ [mm]			
	≤ 250	$250 < l_{\rm ad} \le 500$	$500 < l_{\rm ad} \le 1000$	
$f_{ m k1,d}$	4.0	$5.25-0.005\cdot l_{\rm ad}$	$3.5-0.0015\cdot l_{\rm ad}$	
$f_{ m k2,d}$		0.75		
$f_{ m k3,d}$		1.50		