
CIV-E1060 Engineering Computation and Simulation
Examination, December 12, 2017 / Niiranen

This examination consists of 3 problems rated by the standard scale 1...6.

Problem 1

Let us consider a long and tall wall with a constant thickness L and constant
temperature values on inner and outer surfaces.

If a heat source inside the wall can be modelled by a quadratic function

f = f(x) = f0x(1− x/L),

where x denotes the coordinate along a line across the wall and f0 is a cons-
tant, the temperature distribution inside the wall can be modelled by a one-
dimensional stationary heat diffusion problem through the thickness of the wall:
for given thermal conductivity k, heat source f and boundary temperature va-
lues T0 and TL, find the temperature distribution T such that

− d

dx

(
k(x)

dT (x)

dx

)
= f(x) ∀x ∈ (0, L)

T (0) = T0

T (L) = TL.

Above, it has been assumed that the Fourier law builds a constitutive relation
between heat flux q and temperature T through thermal conductivity k as

q(x) = −k(x)
dT (x)

dx
.

(i) Derive the weak (variational) form of the boundary value problem.

(ii) In order to construct an approximate finite element trial function for the
temperature distribution, let us devide the line interval (0, L) into two ele-
ments of equal size. Write down the expressions for corresponding piecewi-
se linear basis functions in terms of the global x-coordinate.

(iii) Calculate the analytical solution of the heat diffusion problem by assuming
a constant conductivity k = k0 and temperature values T0 = 0, TL = 20.

Model solutions for Problem 1 (somewhat more comprehensive and
detailed than required for the maximum grade):

(i) total 2 p. First, the strong form is multiplied by a test function v = v(x):

− d

dx

(
k(x)

dT (x)

dx

)
v(x) = f(x)v(x).
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Second, the equation is integrated over the problem interval (0, L):

−
∫ L

0

d

dx

(
k(x)

dT (x)

dx

)
v(x) dx =

∫ L

0

f(x)v(x) dx

Third, the left hand side is integrated by parts giving

−
[
k(x)

dT (x)

dx
v(x)

]L
0

+

∫ L

0

k(x)
dT (x)

dx

dv(x)

dx
dx =

∫ L

0

f(x)v(x) dx.

1 p.

Since the essential boundary conditions T (0) = T0, T (L) = TL are given
in the strong form, the corresponding zero boundary conditions v(0) =
0, v(L) = 0 are set for the test function:∫ L

0

f(x)v(x) dx =

∫ L

0

k(x)T ′(x)v′(x) dx.

This gives us the weak form of the problem: Find T = T (x) satisfying
T (0) = T0, T (L) = TL such that∫ L

0

k(x)T ′(x)v′(x) dx =

∫ L

0

f(x)v(x) dx

for all v = v(x) satisfying v(0) = 0 = v(L).
1 p.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
It can be noticed that the trial and test functions have to satisfy the
regularity conditions∫ L

0

(T ′(x))2 dx <∞,
∫ L

0

(v′(x))2 dx <∞.

(ii) total 2 p. With two linear elements of size h = L/2, meaning three
basis functions φi related to the nodes xi = 0, L/2, L and three degrees of
freedom di with i = 0, 1, 2, the corresponding finite element approximation
can be written in the form

Th(x) =

2∑
i=0

φi(x)di.

Lagrange basis functions satisfy the node value condition φi(xj) = δij
(φi(xj) = 1 for j = i and φi(xj) = 0 whenever j 6= i) implying that the
(unknown) degrees of freedom are actually nodal values of the temperature
approximation, i.e., di = Th(xi), and hence

Th(x) =

2∑
i=0

φi(x)Th(xi).
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1 p.

The 1D tent-shaped piecewise linear basis functions are defined as follows
(Draw the corresponding graphs!):

φ0(x) =

{
1− 2x/L, x ∈ [0, L/2)
0, x ∈ [L/2, L]

φ1(x) =

{
2x/L, x ∈ [0, L/2)
2− 2x/L, x ∈ [L/2, L]

φ2(x) =

{
0, x ∈ [0, L/2)
−1 + 2x/L, x ∈ [L/2, L].

1 p.

(iii) total 2 p. The exact solution of the problem can be solved by first inser-
ting the constant conductivity and quadratic loading into the differential
equation and then integrating the equation twice:

−k0T
′′(x) = f0x(1− x/L)

⇒ T ′′(x) =
f0

k0
(
x2

L
− x)

⇒ T ′(x) =
f0

k0
(
x3

3L
− x2

2
) + c1

⇒ T (x) =
f0

k0
(
x4

12L
− x3

6
) + c1x+ c2

1 p.

The integration constants c1 and c2 can be solved from the essential boun-
dary conditions:

0 = T0 = T (0) = c2

20 = TL = T (L) = −f0

k0

L3

12
+ c1L⇒ c1 = 20/L+

f0L
2

12k0
.

The exact solution is finally written as

T (x) =
f0

k0
(
x4

12L
− x3

6
) + (20/L+

f0L
2

12k0
)x

=
f0L

3

12k0
(x/L)4 − f0L

3

6k0
(x/L)3 + (20 +

f0L
3

12k0
)(x/L)

showing, in particular, that conditions T (0) = 0, T (L) = 20 are satisfied.
1 p.
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Problem 2

Let us consider stationary heat conduction in the wall of Problem 1 by using
a two-dimensional model over the quadrangular cross section of the wall with
H denoting the height of the wall. The bottom and top surfaces of the wall are
assumed to be insulated, i.e., the heat flux vanishes along the boundary lines
y = 0 and y = H with y denoting the vertical coordinate of the cross section.

(i) For a given isotropic thermal conductivity k, heat source distribution f
and boundary temperature values T0 and TL, formulate the strong form
of the two-dimensional boundary value problem (draw a picture as well).

(ii) Describe how to derive a finite element approximation for the solution
of the problem, including information about a triangular discretization
with linear Lagrange basis functions, as well as numerical integration and
assembly of the corresponding finite element matrices and vectors.

Model solutions for Problem 3 (somewhat more comprehensive and
detailed than required for the maximum grade):

(i) total 2 p. The strong form of the problem is derived by simply imitating
the 1D formulation of Problem 1 (by simply replacing x with (x, y), and
accordingly T (x) with T (x, y), k(x) with k(x, y), f(x) with f(x, y) and
d/dx with ∇): for given k = k(x, y), f = f(x, y) and T0, TL, find T =
T (x, y) such that

−∇ · (k∇T )(x, y) = f(x, y), (x, y) ∈ Ω,

T (x, y) = T0, (x, y) ∈ ΓT0
⊂ ∂Ω,

T (x, y) = TL, (x, y) ∈ ΓTL
⊂ ∂Ω,

−(k∇T · n)(x, y) = q0 = 0, (x, y) ∈ Γq ⊂ ∂Ω,

where Ω = (0, L)× (0, H) ⊂ R2 denotes the problem domain (the rectan-
gular cross section of the wall), n denotes the outward normal of the boun-
dary curve ∂Ω (the edge lines of the rectangle), ΓT0

= {{x = 0}× (0, H)}
and ΓTL

= {{x = L} × (0, H)} stand for the boundary parts of the es-
sential boundary conditions (the vertical left and right edges) and Γq =
{(0, L)×{y = 0}}∪ {(0, L)×{y = H}} defines the boundary parts of the
natural boundary condition (the horizontal bottom and top edges) and q0

denotes the given heat flux across the boundary part Γq.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
I can be noticed that the divergence operation can be written as

∇ · (k∇T )(x, y) =
d

dx

(
k(x, y)

dT (x, y)

dx

)
+

d

dy

(
k(x, y)

dT (x, y)

dy

)
.

(ii) total 4 p. The integral equation of the weak form of the problem is
achieved as usual: multiplying with a test function v = v(x, y), integrating
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over the domain and integrating by parts (once) giving∫
Ω

(k∇T )(x, y) · ∇v(x, y) dΩ−
( ∫

ΓT0

+

∫
ΓTL

+

∫
ΓTq

)
(k∇T )(x, y) · n v(x, y) ds

=

∫
Ω

f(x, y) v(x, y) dΩ

⇒
∫

Ω

(k∇T )(x, y) · ∇v(x, y) dΩ =

∫
Ω

f(x, y) v(x, y) dΩ.

1 p.

The element stiffness matrix entries keij , i, j = 1, 2, 3, and the force vector
entries fi are calculated according to the weak form:

keij =

∫
e

(k∇φei )(x, y) · ∇φej(x, y) dxdy, fi =

∫
e

f(x, y)φei (x, y) dxdy,

where φei = φei (x, y) are the shape functions of the element. Typically, the-
se xy-integrals over elements are transformed (with affine mappings) onto
the reference element (and integrands as well with appropriate transfor-
mations with Jacobian matrices) and then numerically integrated over the
reference element.
1 p.

Let us focus on one element of the mesh and, in particular, on its cont-
ribution to the global stiffness matrix of the final finite element system
equation. The chosen three-node element situates ”in the origin”of the
xy-coordinate system with corner points (0, 0), (h, 0), (0, h).

The local stiffness matrix of the chosen element (as any other element)
is typically calculated by using a reference element of the ξη-coordinate
system with corner points (0, 0), (1, 0), (0, 1). For the first order (linear)
triangular reference element, the 2D Lagrange shape functions Ni(ξ, η) =
Aiξ + Biη + Ci – associated to corner points c1 = (0, 0), c2 = (1, 0), c3 =
(0, 1) of the ξη-coordinate system – are

N1(ξ, η) = 1− ξ − η, N2(ξ, η) = ξ, N3(ξ, η) = η

since they satisfy conditions Ni(cj) = δij , i, j = 1, 2, 3 (meaning that
N1(c1) = 1 but N1(c2) = 0 = N1(c3) and so on).
1 p.

The global stiffness matrix K of the system Kd = f (and the force
vector f correspondingly) is assembled such that each entry in the global
stiffness matrix (corresponding to one node) gets contributions from the
corresponding entries of the local 3× 3 stiffness matrices Ke of elements
sharing the node of the global entry.

If the (x,y)-origin lies in one corner of the domain occupied by the chosen
element alone (as in this case), it holds that k(0,0) = ke11. (Draw a picture!)
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If the origin situates inside the domain and four elements surround it, for
instance – say, e with corner points (0, 0), (h, 0) and (0, h), e′ with corner
points (0, 0), (0,−h) and (h, 0), e′′ with corner points (0, 0), (−h, 0) and
(0,−h) and e′′′ with corner points (0, 0), (0, h) and (−h, 0) – the corres-
ponding entry in the global stiffness matrix is k(0,0) = ke11+ke

′

11+ke
′′

11 +ke
′′′

11 .
(Draw a picture!)
1 p.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
I can be noticed that since the chosen example element e can be obtained
by simply scaling the reference element by h in both coordinate direc-
tions (Draw a picture!), the shape functions in global coordinates can be
obtained by the simple change of variables, ξ = x/h, η = y/h, giving

φ1(x, y) = 1− x/h− y/h, φ2(x, y) = x/h, φ3(x, y) = y/h

and the corresponding gradients

∇φ1(x, y) =

(
−1/h
−1/h

)
, ∇φ2(x, y) =

(
1/h
0

)
, ∇φ3(x, y) =

(
0

1/h

)
.

For these constant values (together with assuming constant conductivity
k0), the stiffness coefficients reduce – without numerical integration – to

keij =

∫
e

(k∇φei )(x, y) · ∇φej(x, y) dxdy = k0∇φei · ∇φej |e| = k0∇φei · ∇φej h2/2

giving element stiffness matrix finally in the form

Ke =

k11 k12 k13

k21 k22 k23

k31 k32 k33

 =
k0

2

 2 −1 −1
−1 1 0
−1 0 1

 .
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Problem 3

The governing equation of the Euler–Bernoulli beam problem can be written in
the classical form

EIw′′′′ = f.

(i) Define and name the quantities, variables and other notation appearing
in the given formulation.

(ii) Derive the weak form of the problem corresponding to a cantilever beam
and write down the corresponding conforming finite element formulation.

(iii) Form the finite element equation system for a uniformly loaded cantilever
beam by adopting one single element relying on Hermite basis functions

φ1(x) = 1− 3x2 + 2x3,

φ2(x) = x− 2x2 + x3,

φ3(x) = 3x2 − 2x3,

φ4(x) = −x2 + x3.

Model solutions for Problem 3 (somewhat more comprehensive and
detailed than required for the maximum grade):

(i) total 1 p. EI denotes the bending rigidity of the beam (assumed to
be constant in the given form of the differential equation but in general
EI = E(x)I(x)), where Young’s modulus (or elastic modulus) E expresses
the stiffness of the material and I denotes the area moment of inertia (or
second moment of area) of the cross section of the beam; w = w(x) (a C4-
continuous function in principle) denotes the deflection of the neutral axis
of the beam with x denoting the coordinate along the neutral axis; w′ =
w′(x) = dw(x)/dx denotes the x-derivative of the deflection; f = f(x)
denotes the distributed external loading acting transversally on the beam
(and consisting of both body loads as dead weight and surface tractions).

(ii) total 3 p. As always, for deriving the weak form of the problem (and final-
ly the full strong form as well), first, the differential equation is multiplied
by a test function w̃ = w̃(x) and then integrated over the interval:

EIw′′′′(x)w̃(x) = f(x)w̃(x).

Second, both sides of the equation are integrated over the problem domain:∫ L

0

EIw′′′′(x)w̃(x)dx =

∫ L

0

f(x)w̃(x)dx.

Third, applying integration by parts in the left hand side yields

EIw′′′(x)w̃(x)|L0 −
∫ L

0

EIw′′′(x)w̃′(x)dx =

∫ L

0

f(x)w̃(x)dx.
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Fourth, applying integration by parts once again yields

EIw′′′(x)w̃(x)|L0 − EIw′′(x)w̃′(x)|L0 +

∫ L

0

EIw′′(x)w̃′′(x)dx =

∫ L

0

f(x)w̃(x)dx.

1 p.

This form, actually the substitution terms

EIw′′′(x)w̃(x)|L0 − EIw′′(x)w̃′(x)|L0
= EIw′′′(L)w̃(L)− EIw′′′(0)w̃(0)− (EIw′′(L)w̃′(L)− EIw′′(0)w̃′(0)),

already reveals the essential and natural boundary conditions of the problem:
either (shear force) EIw′′′ is given (natural bc) or (deflection) w is given
(essential bc); either (bending moment) EIw′′ is given (natural bc) or
(rotation) w′ is given (essential bc).

In a cantilever beam, one end is clamped, while the other end is free (or
possibly a given point load or point moment is given). Taking into account
the natural (force) boundary conditions Q(L) = −EIw′′′(L) = QL =
0,M(L) = −EIw′′(L) = ML = 0 (both assumed to be zero for simplicity)
of the free (right) end and setting boundary conditions w̃(0) = 0, w̃′(0) = 0
corresponding to the essential (displacement) boundary conditions w(0) =
0, w′(0) = 0 of the clamped (left) end ”kills”the substitution terms (or
makes them known if QL 6= 0 or ML 6= 0) and finally gives the weak form
of the problem: find w ∈ H2(0, L) such that w(0) = 0 = w′(0) and∫ L

0

EIw′′(x)w̃′′(x)dx =

∫ L

0

f(x)w̃(x)dx

for all w̃ ∈ H2(0, L) satisfying conditions w̃(0) = 0 = w̃′(0).
1 p.

The corresponding conforming finite element formulation reads as follows:
find wh ∈ H2(0, L) such that wh(0) = 0 = w′h(0), wh|K ∈ Pk(K) in each
element K (wh is a piece-wise polynomial function of order k) and∫ L

0

EIw′′h(x)w̃′′(x)dx =

∫ L

0

f(x)w̃(x)dx

for all w̃ ∈ H2(0, L), w̃|K ∈ Pk(K), satisfying conditions w̃(0) = 0 =
w̃′(0). In practice, wh ∈ C1(0, L) should hold and for constructing a C1-
continuous approximation polynomial order k = 3 is enough if Hermite
basis functions φi are adopted: wh(x) =

∑
i φi(x)di.

1 p.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
It can be noticed that the strong form of the Euler–Bernoulli beam bending
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problem for a cantilever beam can be written in the form

EIw′′′′(x) = f(x), x ∈ (0, L),

w(0) = w0 = 0,

w′(0) = βL = 0,

Q(L) = −EIw′′′(L) = QL = 0,

M(L) = −EIw′′(L) = ML = 0.

(iii) total 2 p. The given Hermite basis functions, correspond to one single
element with end points x = 0 and x = L = 1 since φ1(0) = 0, φ′2(0) = 0,
φ3(0) = 0, φ′4(0) = 0. Accordingly, basis functions φ1 and φ2 correspond to
the degrees of freedom d1 = wh(0) and d2 = w′h(0), respectively, whereas
φ3 and φ4 correspond to the degrees of freedom d3 = wh(L) and d4 =
w′h(L), respectively. The finite element approximation is then of the form

wh(x) =

4∑
i=1

φi(x)di

= φ1(x)wh(0) + φ2(x)w′h(0) + φ3(x)wh(L) + φ4(x)w′h(L)

= φ3(x)wh(L) + φ4(x)w′h(L),

where the last equality follows from the fact that the finite element ap-
proximation needs to satisfy the essential boundary conditions d1 = wh(0) =
0, d2 = w′h(0) = 0 (and the test function as well) expressed in the finite
element formulation above in item (ii).
1 p.

The original 4 × 4 equation system now reduces to a 2 × 2 the system of
two unknowns (d3 and d4):

Kd = f ⇔
(
k33 k34

k43 k44

)(
d3

d4

)
=

(
f3

f4

)
.

The stiffness matrix and force vector entries take their forms from the
finite element formulation as follows:

kij =

∫ 1

0

EIφ′′i (x)φ′′j (x)dx = kji, fi =

∫ 1

0

f(x)φi(x)dx,

where the shape function derivatives are given as

φ′′1(x) = −6 + 12x, φ′′2(x) = −4 + 6x, φ′′3(x) = 6− 12x, φ′′4(x) = −2 + 6x.

After calculating the stiffness matrix entries k33, k34 = k43, k44 (for cons-
tant bending rigidity EI, it holds that k33 = 12EI, k34 = −6EI =
k43, k44 = 4EI) and force vector components f3, f4 for bending stiffness
EI and loading f (not prescribed in the problem setting), the equation
system, and finally the finite element approximation for the deflection, can
be easily solved: d = K−1f .
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CIV-E1060 Engineering Computation and Simulation
Examination, December 11, 2018 / Niiranen

This examination consists of 3 problems, each rated by the standard scale 1...6.

Problem 1

The derivative of function f = f(x) at point x is defined as

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

(i) Write down the following three approximations for this derivative: forward
finite difference, backward finite difference and central finite difference.

(ii) What are the main differences between the three approximations?

(iii) Let us consider the extension–compression state of a longish structure
modelled by using the engineering rod model implying the governing dif-
ferential equation

−(EAu′)′(x) = b(x), x ∈ (0, L),

with axial distributed loading b, structural length L as well as constant
cross-sectional area A and stiffness modulus E. One end of the bar struc-
ture is fixed, whereas the other end is loaded by an axial endpoint force
NL, implying boundary conditions

u(0) = 0

EAu′(L) = NL.

In order to find an approximate solution to the boundary value problem
formed by the differential equation and boundary conditions, utilize the
second-order finite difference approximation

f ′′(x) ≈ f(x− h)− 2f(x) + f(x+ h)

h2

together with the finite difference approximations of item (i) for writing
down the system equations of the finite difference method corresponding
to a uniform three-point grid: x0 = 0, x1 = L/2, x2 = L.

Model solutions for Problem 1

(i) The forward finite difference follows the definition of the derivative:

f ′(x) ≈ f(x+ h)− f(x)

h
.
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The backward finite difference can be derived from the forward one by
setting x+ h = z which gives x = z − h and finally replacing z by x):

f ′(x) ≈ f(x)− f(x− h)

h
.

The central finite difference is the average of these two:

f ′(x) ≈ f(x+ h)− f(x− h)

2h
.

Drawing a picture where all these differences approximate the true deri-
vative tells a lot. 3 p.

(ii) Each approximation requires two function evaluations (in the first two, at
the point itself and at a point either a bit ahead or a bit behind; in the last
one, at points a bit behind and a bit ahead) subtraction and division but
the last one is more accurate (of order h2) than the other two (of order
h). 1 p.

(iii) The essential and natural boundary conditions give two equations, respec-
tively:

0 =u(0) = u(x0)

NL =EAu′(L) = EAu′(x2) ≈ EAu(x2)− u(x1)

L/2
.

The differential equation gives equation

b(x1) = −EAu′′(x) ≈ −EAu(x0)− 2u(x1) + u(x2)

(L/2)2

Together these equations give u(x0) = 0 and the system

−EA−2u(x1) + u(x2)

L2/4
= b(x1)

EA
u(x2)− u(x1)

L/2
= NL

or in the matrix form

EA

[
2 −1
−1 1

] [
u(x1)
u(x2)

]
=

[
b(x1)L2/4
NLL/2

]
.

2 p.
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Problem 2

Let us consider a longish structure supported as follows: one end is clamped
and the other end is simply supported. The beam-like structure is subject to
distributed transversal and axial loadings acting along the central axis and to
an axial endpoint force and a bending moment acting at the simply supported
end.

Let us assume that the bending state of the structure is modelled by using
the Euler–Bernoulli beam theory with linear strains and linearly elastic material
properties implying the governing equation

(EIw′′)′′(x) = f(x), x ∈ (0, L),

whereas the extension–compression state of the structure is modelled by using
the engineering rod model with linear strains and linearly elastic material pro-
perties implying the governing equation

−(EAu′)′(x) = b(x), x ∈ (0, L).

(i) Write down the complete strong forms of both boundary value problems
corresponding to the given differential equations and to the given descrip-
tion of the physical problem setting.

(ii) The integral equation in the weak form of the engineering rod extension–
compression problem is written as∫ L

0

EAu′(x)v′(x) dx =

∫ L

0

b(x)v(x) dx+NL v(L).

Derive the integral equation of the weak form of the Euler–Bernoulli beam
bending problem.

(iii) Shortly describe the main differences between the weak forms of the Euler–
Bernoulli beam bending problem and engineering rod problem and clarify
the consequences of these differences to the corresponding finite element
methods.

Model solutions for Problem 2

(i) The engineering rod problem: Find u = u(x) such that

−(EAu′)′(x) = b(x), x ∈ (0, L),

u(0) = 0

EAu′(L) = N(L) = NL.

The Euler–Bernoulli beam problem: Find w = w(x) such that

(EIw′′)′′(x) = f(x), x ∈ (0, L),

w(0) = 0, w′(0) = 0

w(L) = 0,−EIw′′(L) = M(L) = ML

2 p.
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(ii) The integral equation is derived by multiplying by a test function v = v(x),
integrating over the interval and by integrating by parts twice:

(EIw′′)′′(x) = f(x), x ∈ (0, L)

(EIw′′)′′(x)v(x) = f(x)v(x), x ∈ (0, L)∫ L

0

(EIw′′)′′(x)v(x)dx =

∫ L

0

f(x)v(x)dx

[(EIw′′)′(x)v(x)]L0 −
∫ L

0

(EIw′′)′(x)v′(x)dx =

∫ L

0

f(x)v(x)dx

[(EIw′′)′(x)v(x)]L0 − [EIw′′(x)v′(x)]L0 +

∫ L

0

(EIw′′)(x)v′′(x)dx =

∫ L

0

f(x)v(x)dx

Inserting the natural boundary condition −EIw′′(L) = ML into the up-
per limit of the second substitution term, and setting v(0) = 0, v′(0) =
0, v(L) = 0 into the second substitution term give∫ L

0

(EIw′′)(x)v′′(x)dx =

∫ L

0

f(x)v(x)dx−MLv
′(L)

3 p.

(iii) The integral form of the bar problem has no more than one derivative for
both functions w and v, which means that the finite element approxima-
tion must be continuous – a piecewise polynomial continuous approxima-
tion is fine (even piecewise linear, first order, basis functions are enough,
for instance). The integral form of the beam problem has two derivatives
for both functions w and v, which means that the finite element approxi-
mation must be C1-continuous: even its derivative must be continuous – a
piecewise polynomial C1-continuous approximation is required (piecewise
cubic, third order, Hermite-basis functions are needed, for instance).

1 p.
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Problem 3

Let us consider stationary heat conduction in a plane domain. The physical
problem can be modeled by relying on the first law of thermodynamics combined
with the stationary state assumption implying the partial differential equation

∇ · q = f in Ω

with the Fourier law building a constitutive relation between heat flux q =
(q1(x, y), q2(x, y)) and temperature T = T (x, y) through thermal conductivity
k = k(x, y) in the form

q = −k∇T in Ω.

The integral equation in the weak form of the corresponding boundary va-
lue problem – with appropriate boundary conditions as well as trial and test
functions – reads as follows:∫

Ω

(k∇T )(x, y) · ∇v(x, y) dΩ =

∫
Ω

f(x, y) v(x, y) dΩ ∀v ∈ V.

Let us solve the corresponding problem by a finite element method with
bilinear (first order) quadrangular elements. Let us focus on one element of the
mesh and, in particular, on its contribution to the global stiffness matrix of the
final finite element system equation.

(i) The chosen element is placed ”in the origin”of the xy-coordinate system
with corner points (0, 0), (h, 0), (h, h), (0, h). Write down the standard first
order Lagrange basis functions of the element in terms of coordinates x
and y.

(ii) Typically, the local stiffness matrix of the chosen element (as any other
element) is calculated by using a reference element of the ξη-coordinate
system with corner points (−1,−1), (1,−1), (1, 1), (−1, 1). Write down the
standard first order Lagrange basis functions of the reference element in
terms of coordinates ξ and η.

(iii) Calculate the local stiffness matrix of the chosen element by using either
the shape functions written in the global coordinate system or the ones
written in the reference element coordinate system with the correspon-
ding coordinate transformations. Thermal conductivity is assumed to be
constant: k = k0.

(iv) Describe briefly, possibly with some formulae or results from (i)–(iii), how
the local element stiffness matrix contributes to the global stiffness matrix
of the problem in the assembly process of a quadrangular mesh.
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Model solutions for Problem 3

(i) Each basis function should have value 1 at its node and decrease bilinearly
to value 0 reached at the other nodes. The shape function corresponding
to node (h, h) is the easiest one:

φ3(x, y) = xy/h2.

The shape function corresponding to node (0, 0) is the next one:

φ1(x, y) = (x− h)(y − h)/h2.

The shape function corresponding to nodes (h, 0) and (0, h) are mixtures
of the first two, respectively:

φ2(x, y) = x(y − h)/h2, φ4(x, y) = (x− h)y/h2.

Each function is of the form a+bx+cy+dxy, with some constants a, b, c, d.
1 p.

(ii) Each basis function should have value 1 at its node and decrease bilinearly
to value 0 reached at the other nodes. The shape function corresponding
to node (1, 1) is the easiest one:

N3(ξ, η) = (1 + ξ)(1 + η)/4.

The shape function corresponding to node (−1,−1) is the next one:

N1(ξ, η) = (1− ξ)(1− η)/4.

The shape function corresponding to nodes (1,−1) and (−1, 1) are mix-
tures of the first two, respectively:

N2(ξ, η) = (1 + ξ)(1− η)/4, N4(ξ, η) = (1− ξ)(1 + η)/4.

Each function is of the form a+bξ+cη+dξη, with some constants a, b, c, d.
1 p.

(iii) The stiffness matrices of every element e follow the left hand side of the
the integral equation:

kij =

∫
e

k0∇φi(x, y) · ∇φj(x, y) dΩ

ke11 = ... = 2k0/3 = ke22 = ke33 = ke44

ke12 = ... = −k0/6 = ke14 = ke23 = ke34

ke13 = ... = −k0/3 = ke24

The rest entries of the 4 × 4 element stiffness matrix follow from the
symmetry of the matrix. 3 p.

6



(iv) In the global stiffness matrix, there is one entry for each node. In a mesh of
quadrangular elements, every node has four element around it. This means
that every entry is a sum of four element contributions. For instance, if
node number i (say, i = 9 in the global numbering) is surrounded by
four elements such that the upper right corner of element 1, upper left
corner of element 2, lower left corner of element 3 and lower right corner
of element 4 meet at node i, the global diagonal stiffness entry of node i
is kii = k1

33 + k2
44 + k3

11 + k4
22. (The other entries corresponding to node

i = 9, i.e., k9j = kj9 must be considered in a bit more complex manner
but most of them are zeros as typical in finite element methods.)

1 p.
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CIV-E1060 Engineering Computation and Simulation
Examination, December 10, 2019 / Niiranen

This examination consists of 3 problems, each rated by the standard scale 1...6.

Problem 1

The derivative of function f = f(x) at point x is defined as

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

(i) Write down the following three approximations for this derivative: forward
finite difference, backward finite difference and central finite difference.
Draw a picture illustrating the derivative and its three approximations.

(ii) Let us consider heat conduction modelled by using a one-dimensional mo-
del associated to the governing differential equation

−(kT ′)′(x) = s(x), x ∈ (0, L),

with a distributed heat source s, structural length L and thermal conduc-
tivity k. At one end of the structure, temperature is fixed to zero, whereas
at the other end heat flux q(x) = −k(x)T ′(x) is known, implying boundary
conditions

T (0) = 0

−k(L)T ′(L) = qL.

In order to find an approximate solution to the boundary value problem
formed by the differential equation and boundary conditions, utilize the
second-order finite difference approximation

f ′′(x) ≈ f(x− h)− 2f(x) + f(x+ h)

h2

together with the finite difference approximation(s) of item (i) for writing
down the system equations of the finite difference method corresponding
to a uniform four-point grid: x0 = 0, x1 = L/3, x2 = 2L/3, x3 = L.

(iii) Briefly explain the most fundamental differences in solving the same model
problem (1) by the finite difference method (as described above) and (2)
by the finite element method with linear elements (say, with x0, x1, x2 and
x3 as nodal points).

Model solutions for Problem 1

(i) 2 p. The forward finite difference follows the definition of derivative by
simply dropping the limit away:

f ′(x) ≈ f(x+ h)− f(x)

h
.

1



The backward finite difference can be derived from the forward one by
setting x + h = z which gives x = z − h, and finally replacing z by x for
convenience):

f ′(x) ≈ f(x)− f(x− h)

h
.

The central finite difference is the average of these two:

f ′(x) ≈ f(x+ h)− f(x− h)

2h
.

Drawing a picture (with curve y = f(x)) where all these differences ap-
proximate the true derivative (the tangent of the curve at x) tells a lot.

(ii) 3 p. First, the essential and natural boundary conditions – valid at points
x0 = 0 and x3 = L, respectively – give the first two equations:

0 =T (0) = T (x0) (1)

qL =− k(L)T ′(L) = −k(x3)T ′(x3) ≈ −k(x3)
T (x3)− T (x2)

L/3
, (2)

where the backward finite difference from above has been used with x =
x3, x− h = x2 and h = L/3.

Second, for the differential equation involving the second order derivatives,
let us first assume that k is constant (giving (kT ′)′ = k′T ′ + kT ′′ = kT ′′).
The differential equation – valid at points x1 = L/3 and x2 = 2L/3 – gives
then two equations:

s(x1) = −kT ′′(x1) ≈ −kT (x0)− 2T (x1) + T (x2)

(L/3)2
(3)

s(x2) = −kT ′′(x2) ≈ −kT (x1)− 2T (x2) + T (x3)

(L/3)2
(4)

For non-constant k, the right hand sides should be augmented with the
appropriate finite differences for k′T ′ at x1 and x2, respectively (now omit-
ted).

Together with the boundary conditions, these equations give the following
system of equations (for constant k):

T (x0) = 0

−k−2T (x1) + T (x2)

L2/9
= s(x1)

−kT (x1)− 2T (x2) + T (x3)

L2/9
= s(x2)

−k−T (x2) + T (x3)

L/3
= qL

2



or in a matrix form

k


1 0 0 0
0 2 −1 0
0 −1 2 −1
0 0 −1 1



T (x0)
T (x1)
T (x2)
T (x3)

 =


0

s(x1)L2/9
s(x2)L2/9
−qLL/3

 .
In this equation system, the order of the rows corresponds to the equations
above in the order (1), (3), (4), (2).

(iii) 1 p. In the finite difference method (as described above), the differential
equation and the boundary conditions, i.e., the strong form of the problem,
is forced to be true at a fixed number of grid points (xi above) (some of
them on the boundary of the solution domain, most of them inside the
domain). The unknowns of the problem are the values of the primary
problem variable at the grid points (as T (xi) above). There is no trial
solution in this approximation method, neither a test function.

In the finite element method, instead, the strong form is transformed into
the corresponding weak form which is an integral equation. The solution
domain is divided into smaller elements (as line segments in 1D having
nodal points as end points, cf. the grid points above). A continuous trial
solution, typically a piecewise polynomial function, is formed as a sum of,
typically polynomial, basis functions and unkown function values of the
primary problem variable at nodal points.
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Problem 2

Let us consider stationary heat conduction in a plane domain. The physical
problem can be modeled by relying on the first law of thermodynamics combined
with the stationary state assumption implying the partial differential equation

∇ · q = f in Ω

with the Fourier law building a constitutive relation between heat flux q =
(q1(x, y), q2(x, y)) and temperature T = T (x, y) through thermal conductivity
k = k(x, y) in the form

q = −k∇T in Ω.

The integral equation in the weak form of the corresponding boundary va-
lue problem – with appropriate boundary conditions as well as trial and test
functions – reads as follows:∫

Ω

(k∇T )(x, y) · ∇v(x, y) dΩ =

∫
Ω

f(x, y) v(x, y) dΩ ∀v ∈ V.

Let us solve the corresponding problem by a finite element method with
linear (first order) triangular elements. Let us focus on one element of the mesh
and, in particular, on its contribution to the global stiffness matrix of the final
finite element system equation.

(i) The chosen element is placed ”in the origin”of the xy-coordinate system
with corner points (0, 0), (h, 0), (0, h). Write down the standard first order
Lagrange basis functions of the element in terms of coordinates x and y.

(ii) Calculate the local stiffness matrix of the chosen element by using the
shape functions written in the global coordinate system. For simplicity,
thermal conductivity is assumed to be constant: k = k0.

(iii) Describe briefly, possibly with some formulae or results from (i)–(ii), how
the local element stiffness matrix contributes to the global stiffness matrix
of the problem in the assembly process of a triangular mesh.

Model solutions for Problem 2

(i) 2 p. The Lagrange shape functions of the chosen element placed ”in the
origin”of the xy-coordinate system with corner points c1 = (0, 0), c2 =
(h, 0), c3 = (0, h) can be obtained either (1) by first forming the correspon-
ding functions for a reference element with corner points (0, 0), (1, 0), (0, 1)
ξη-coordinate system and then using a simple change of variables ξ =
x/h, η = y/h or by (2) working only with the global coordinates as fol-
lows:
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Since the basis function are linear, they are of the form φi(x, y) = Ai +
Bix+Ciy, i = 1, 2, 3, and they satisfy conditions φi(cj) = δij , i, j = 1, 2, 3,
at corner points cj . As an example, for the first basis function it holds that

1 = φ1(c1) = φ1(0, 0) = A1,

0 = φ1(c2) = φ1(0, h) = A1 + C1h

0 = φ1(c3) = φ1(h, 0) = A1 +B1h

giving A1 = 1, B1 = −1/h,C1 = −1/h. This way, the basis functions get
expressions

φ1(x, y) = 1− x/h− y/h, φ2(x, y) = x/h, φ3(x, y) = y/h.

(ii) 2 p. The corresponding gradients read as

∇φ1(x, y) =

(
∂φ1/∂x
∂φ1/∂y

)
=

(
−1/h
−1/h

)
, ∇φ2(x, y) =

(
1/h
0

)
, ∇φ3(x, y) =

(
0

1/h

)
.

For these constant values (together with the assumption of constant con-
ductivity k0), the stiffness coefficients of element e reduce to

keij =

∫
e

(k∇φei )(x, y) · ∇φej(x, y) dxdy = k0∇φei · ∇φej |e| = k0∇φei · ∇φej h2/2

where |e| denotes the area of element e. Accordingly, the element stiffness
matrix takes the form

Ke =

ke11 ke12 ke13

ke21 ke22 ke23

ke31 ke32 ke33

 =
k0

2

 2 −1 −1
−1 1 0
−1 0 1

 .

(iii) 2 p. The global stiffness matrix K of the system Kd = f (and the force
vector f correspondingly) is assembled such that each entry in the global
stiffness matrix (corresponding to one corner node) gets contributions from
the corresponding entries of the local 3×3 stiffness matrices Ke of elements
sharing the node of the global entry.

If the (x,y)-origin lies in one corner of the domain occupied by the chosen
element alone (as in this case), it holds that k(0,0) = ke11. (Draw a picture
for clarifying the situation!)

If the origin situates inside the domain and four elements surround it, for
instance – say, e with corner points (0, 0), (h, 0) and (0, h), e′ with corner
points (0, 0), (0,−h) and (h, 0), e′′ with corner points (0, 0), (−h, 0) and
(0,−h) and e′′′ with corner points (0, 0), (0, h) and (−h, 0) – the corres-
ponding entry in the global stiffness matrix is k(0,0) = ke11+ke

′

11+ke
′′

11 +ke
′′′

11 .
(Draw a picture for clarifying the situation!)
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Problem 3

Let us consider a longish structure lying on supports at both ends. Let us model
the static stress state of the structure by a simple beam bending model resulting
in a one-dimensional boundary value problem: for given loadings f = f(x), M0

and ML, find bending moment M = M(x) such that

−M ′′(x) = f(x) ∀x ∈ (0, L),

M(0) = M0,

M(L) = ML,

where L denotes the length of the beam and f stands for the distributed trans-
versal loading, whereas moments M0 and ML are zeros for the simply supported
beam in question.

(i) Derive the weak form of the problem setting.

(ii) Let us analyze the transversal (bending-caused) deflection of the same
beam structure. Write down the corresponding boundary value problem in
terms of deflection by following the classical Euler–Bernoulli beam model,
and derive the associated weak form.

(iii) Form the finite element equation system for the displacement formula-
tion of item (ii) by adopting one single element relying on Hermite basis
functions

φ1(x) = 1− 3x2 + 2x3,

φ2(x) = x− 2x2 + x3,

φ3(x) = 3x2 − 2x3,

φ4(x) = −x2 + x3.

Model solutions for Problem 3

(i) 2 p. The weak form can be derived by multiplying the differential equa-
tion by a test function v = v(x), integrating over the interval and then
integrating by parts once:

−M ′′(x)v(x) = f(x)v(x), x ∈ (0, L)

−
∫ L

0

M ′′(x)v(x)dx =

∫ L

0

f(x)v(x)dx

[M ′(x)v(x)]L0 +

∫ L

0

M ′(x)v′(x)dx =

∫ L

0

f(x)v(x)dx.

Since the boundary conditions of the strong form at x = 0 and x = L
set values (now assumed to be zeros) to the primary variable M , the test
function must satisfy the corresponding conditions, i.e., v(0) = 0 = v(L)
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which clean out the substitution term in the integral equation above. The
weak form then reads as follows: Find M = M(x) such that M(0) = 0,
M(L) = 0 and ∫ L

0

M ′(x)v′(x)dx =

∫ L

0

f(x)v(x)dx

for all v = v(x) satisfying v(0) = 0 and v(L) = 0.

(ii) 2 p. From the bending moment problem above, the corresponding Euler–
Bernoulli bending deflection problem can be derived by inserting the de-
fition of bending moment M(x) = −EIw′′(x) into the problem setting:
Find w = w(x) such that

(EIw′′)′′(x) = f(x), x ∈ (0, L),

−EIw′′(0) = 0,

−EIw′′(L) = 0,

w(0) = 0,

w(L) = 0,

where the last two conditions must be added as the problem is of order four
and these conditions are the correct ones for a simply supported beam.

The weak form can be derived by multiplying the differential equation by
a test function v = v(x), integrating over the interval and by integrating
by parts twice:

(EIw′′)′′(x)v(x) = f(x)v(x), x ∈ (0, L)∫ L

0

(EIw′′)′′(x)v(x)dx =

∫ L

0

f(x)v(x)dx

[(EIw′′)′(x)v(x)]L0 −
∫ L

0

(EIw′′)′(x)v′(x)dx =

∫ L

0

f(x)v(x)dx

[(EIw′′)′(x)v(x)]L0 − [EIw′′(x)v′(x)]L0 +

∫ L

0

(EIw′′)(x)v′′(x)dx =

∫ L

0

f(x)v(x)dx.

Inserting the natural boundary conditions −EIw′′(0) = M0 = 0 and
−EIw′′(L) = ML = 0 into the second substitution term, and setting
conditions v(0) = 0, v(L) = 0 in the first substitution term give the weak
form: Find w = w(x) such that w(0) = 0, w(L) = 0 and∫ L

0

(EIw′′)(x)v′′(x)dx =

∫ L

0

f(x)v(x)dx

for all v = v(x) satisfying v(0) = 0 and v(L) = 0.

(iii) 2 p. It should be noticed first that the given Hermite functions apply for
interval (0, L), i.e., for L = 1, whereas for a general interval x should be
replaced by its dimensionless counterpart x/L.
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Let us next check which basis functions correspond to the deflection degrees
of freedom (deflection values at the end points): since

φ1(0) = 1, φ1(1) = 0

φ2(0) = 0, φ2(1) = 0

φ3(0) = 0, φ3(1) = 1

φ4(0) = 0, φ4(1) = 0,

functions φ1 and φ3 correspond to the deflection values at x = 0 and x = 1,
respectively. Since the deflection distribution in the element (occupying
the whole beam) is written as

wh(x) = φ1(x)d1 + φ2(x)d2 + φ3(x)d3 + φ4(x)d4,

and this deflection must satisfy conditions 0 = wh(0) = d1 and 0 =
wh(1) = d3, only two degrees of freedom and the corresponding two basis
function survive to the final computations:

wh(x) = φ2(x)d2 + φ4(x)d4.

Accordingly, the stiffness matrix of the problem reduces from 4×4 to 2×2:

Ke =

(
ke22 ke24

ke42 ke44

)
, keij =

∫ 1

0

EIφ′′i (x)φ′′j (x)dx.

The corresponding force vector reads as

fe =

(
fe2
fe4

)
, fei =

∫ 1

0

f(x)φi(x)dx,

and the system of equations for finding de = (d2, d4) takes the form
Kede = fe.

With a constant EI, the system matrix would take the form

Ke =
EI

L3

(
4L2 2L2

2L2 4L2

)
but solving the whole problem we should know the loading function.
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CIV-E1060 Engineering Computation and Simulation
Examination, December 8, 2020 / Niiranen

This examination consists of 3 problems, each rated by the standard scale 1...6.

Problem 1

(i) From the definition of derivative for a one-variable scalar function f = f(x) at point x defined as

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
,

(1) derive the three basic numerical approximations for the derivative and (2) illustrate these
concepts by a picture by using the polynomial function f(x) = x(4−x) and its derivative at x = 1
as an example.

(ii) When analyzing an engineering problem with the finite element method, which are the possibilities
available for an engineering consultancy office and its engineers to assure that the results obtained
for the problem by a specific method provided by a chosen software are reliable? In your answer,
briefly consider first (1) the possibilities originating from the nature and features of finite element
methods and then (2) the possibilities valid for engineering modelling and computation in general.

(iii) When using the Hermite basis functions in the finite element method for Euler–Bernoulli beams,
(1) which type of numerical integration scheme(s) should be used for evaluating the stiffness matrix
entries and (2) why?

Model solutions to Problem 1

(i) 2 p. (1) The forward finite difference follows the definition of derivative by simply dropping the
limit away:

f ′(x) ≈ f(x+ h)− f(x)

h
.

The backward finite difference can be derived from the forward one by replacing h by −h, which
gives

f ′(x) ≈ f(x− h)− f(x)

−h
=
f(x)− f(x− x)

h
.

The central finite difference is the average of the forward and backward differences:

f ′(x) ≈ (
f(x+ h)− f(x)

h
+
f(x)− f(x− x)

h
)/2 =

f(x+ h)− f(x− h)

2h
.

(2) Drawing a picture with the curve y = f(x) = x(4− x) tells a lot: the curve is a parabola which
opens downwards and has zeros x = 0 and x = 4; the derivative is f ′(x) = −2x + 4 and its value
at x = 1 is f ′(1) = 1 and it means the slope of the tangent of the curve at point x = 1, f(1) = 3.

The approximate derivatives give three approximations for the tangent: a line passing through
points (1, f(1)) and (1 + h, f(1 + h)); a line passing through points (1− h, f(1− h)) and (1, f(1));
a line passing through points (1 − h, f(1 − h)) and (1 + h, f(1 + h)). The smaller h is, the closer
the approximations are to the true tangent and each other. For drawing the curves, one can choose
h = 0.1, for instance.

(For this example function, the central difference gives

f ′(x) ≈ (x+ h)(4− (x+ h))− (x− h)(4− (x− h))

2h
= ... = 4− 2x

which is the exact value of the derivative, independently of h.)

1



(ii) 2 p. (1) The nature and features of finite element methods enable the following: (a) increasing the
number of elements step by step (meaning a set of finer meshes) and investigating if the results
converge; (b) increasing the polynomial order for reaching higher accuracy; (c) trying a totally
different method (element) provides a possibility for a double-check.

(2) Engineering modelling and computation in general support the following: (a) in structural
mechanics, in particular, checking the balance between the external loadings and the reaction
forces; (b) using another modelling option of a higher level (e.g., 2D instead of 1D) gives a validation
reference; (c) another method or software can give a confirmation for the correctness of the results;
(d) a comparison to a known solution (verification) of a simple model problem and a comparison
to experimental results (validation) are sometimes available; (e) giving a task to two engineers (or
two different groups) provides a possibility for a double-check. (It was not required to list all of
these options.)

(iii) 2 p. (1) The Hermite basis functions are qubic (third-order) polynomes, but the stiffness matrix
entries of the finite element method for Euler–Bernoulli beams include an integral of the product
of the second derivatives of two basis functions (and the bending rigidity which can be assumed to
be constant):

keij =

∫
e

EIϕ′′
i (x)ϕ′′

j (x) dx.

Since the second derivatives are linear (first-order) polynomes, their product is a quadratic (second-
order) polynome. In order to accurately integrate a quadratic polynome by a numerical quadrature,
one can use the Gauss quadrature with n = 2 points due to the following reason:

(2) The Gauss quadrature with n points integrates accurately a polynome of order 2n − 1. Since
now the integrand is a polynome of order m = 2, the required number of points can be obtained
by setting 2n− 1 = m = 2 which gives n = 3/2 meaning that choosing n = 2 is enough (but n = 1
is not).
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Problem 2

(i) Let us consider a diffusion–convection–reaction process modelled by using a one-dimensional model
associated to the governing differential equation

−(ku′)′(x) + cu′(x) + ru(x) = s(x), x ∈ (0, L),

with a distributed source s and length L as well as the diffusivity (k), convection velocity (c) and
reactivity (r) parameters. At one end of the problem domain (say, at x = 0), the primary problem
variable is fixed to zero, whereas at the other end (say, at x = L) the flux of the primary variable
is known – implying the boundary conditions of the problem.

(1) Derive the weak form of the problem. (2) What is the main difference this weak form implies
to the corresponding finite element system equation when compared to the standard weak form of
the diffusion problem?

(ii) Let us consider stationary heat conduction in a quadrangular domain (say, simply 1 m (or a m)
wide and 2 m (or b m, with b > a) long). The physical problem can be modeled by relying on the
first law of thermodynamics combined with the stationary state assumption, implying the partial
differential equation

∇ · q = f in Ω

with the Fourier law building a constitutive relation between heat flux q = (q1(x, y), q2(x, y)) and
temperature T = T (x, y) through thermal conductivity k = k(x, y) written in the form

q = −k∇T in Ω.

(1) Write down – the detailed derivation is not required – the weak form of the corresponding
boundary value problem by assuming that along the boundary of the domain heat is fixed to a
constant value.

(2) Find a rough approximation for the peak value of the temperature field, in the simplest case
of constant conductivity and a constant heat source, by applying the finite element method of
linear (first-order) triangular elements. You can use as many or as few elements as you consider
reasonable for the given purpose.

Model solutions to Problem 2

(i) 2 p. (1) The weak form can be derived by multiplying the differential equation by a test function
v = v(x) integrating over the interval and then integrating by parts once:

[−(ku′)′(x) + cu′(x) + ru(x)]v(x) = s(x)v(x), x ∈ (0, L),

− (ku′)′(x)v(x) + cu′(x)v(x) + ru(x)v(x) = s(x)v(x), x ∈ (0, L),∫ L

0

[−(ku′)′(x)v(x) + cu′(x)v(x) + ru(x)v(x)] dx =

∫ L

0

s(x)v(x) dx,

−
∫ L

0

(ku′)′(x)v(x) dx+

∫ L

0

cu′(x)v(x) dx+

∫ L

0

ru(x)v(x)) dx

=

∫ L

0

s(x)v(x) dx,

− [(ku′)(x)v(x)]L0 +

∫ L

0

(ku′)(x)v′(x) dx+

∫ L

0

cu′(x)v(x) dx+

∫ L

0

ru(x)v(x)) dx

=

∫ L

0

s(x)v(x) dx,

Since the boundary condition at x = 0 is u(0) = 0, the test function must satisfy the corresponding
condition v(0) = 0. Setting the boundary condition −ku′(L) = qL at x = L finally implies the
weak form: Find u = u(x) such that u(0) = 0 and∫ L

0

(ku′)(x)v′(x) dx+

∫ L

0

cu′(x)v(x) dx+

∫ L

0

ru(x)v(x)) dx

=

∫ L

0

s(x)v(x) dx+ ku′(L)v(L),
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for all v = v(x) satisfying v(0) = 0.

(2) Compared to the standard diffusion problem (terms corresponding to c and r are missing), this
problem implies a nonsymmetric stiffness matrix since in the integrad of the c-term u does have a
derivative but v does not. (The r-term is symmetric similarly to the k-term.)

(ii) 4 p. (1) Since an essential boundary condition is given all around the boundary, the weak form is
of the simplest possible form: Find T = T (x, y) such that T = T0 on the boundary Γ and∫

Ω

(k∇T )(x, y) · ∇v(x, y) dΩ =

∫
Ω

f(x, y) v(x, y) dΩ

for all v = v(x, y) satisfying v = 0 on Γ.

(2) For finding a rough finite element approximation for the exact solution (which in this problem is a
bubble function growing from the constant value of the boundaries to a peak value in the middle), let us
first utilize the symmetry of the problem by considering only one quadrant of the rectangle: if the rectangle
is placed such that the 2 m long sides form the bottom and top edges, we consider the quadrant rectangle
in the upper left corner. Accordingly, let us fix the origin of an xy-coordinate system to the middle point
of the left 1 m long edge of the original rectangle. Hence, the quadrant in consideration is described in
this coordinate system by the domain (0, 1) × (0, 1/2). This domain is divided into two triangles: the
first having the vertices (0, 0), (1, 0), (0, 1/2); the second having the vertices (1, 0), (1, 1/2), (0, 1/2). Three
of these vertices situate on the boundaries of the original rectangle which means that at those points
T = T0, and only the vertex (1, 0) (shared by both triangles) lies inside the original rectangle (in the
center where the peak temperature should appear).

Let us consider the first triangle having the nodes (0, 0), (1, 0), (0, 1/2) and the corresponding linear
shape functions

N1(x, y) = 1− x/L1 − y/L2 = 1− x− 2y,

N2(x, y) = x/L1 = x,

N3(x, y) = y/L2 = 2y,

with the base and height dimensions L1 = 1, L2 = 1/2 (this way the shape functions satisfy the required
conditions: decrease from value 1 linearly to 0). In the final system equation, for this triangle the only
essential stiffness entry is the one corresponding to the node (1, 0) (other nodes lie on the boundary)
giving

k1
22 =

∫
e

(k∇N2)(x, y) · ∇N2(x, y) dΩ =

∫
e

k(1, 0) · (1, 0) dΩ = kL1L2/2 = k/4.

The corresponding load component is

f1
2 =

∫
e

f0N2(x, y) dΩ = f0/2.

For considering the second triangle having the nodes (1, 0), (1, 1/2), (0, 1/2), we move the origin of the
coordinate system to the point (1, 1/2) and direct the y-axis downwards. In the final system equation,
for this triangle the only essential stiffness entry is (in this new system) the one corresponding to the
node (0, 1/2) giving

k2
33 =

∫
e

(k∇N3)(x, y) · ∇N3(x, y) dΩ =

∫
e

k(0, 2) · (0, 2)dΩ = 2kL1L2 = k.

The corresponding load component is

f2
3 =

∫
e

f0N3(x, y)dΩ = f0/4.

Both triangles contribute to the nonzero degree of freedom Tm = T 1
22 = T 2

33 (situating in the middle
of the original rectangle) and hence form the finite element system equation

(5k/4)Tm = (k1
22 + k2

33)Tm = f1
2 + f2

3 = 3f0/4

which gives the peak value approximation Tm = 3f0/5k.
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Problem 3

(i) Briefly explain what are the key reasons for using the so-called reference element approach in finite
element methods.

(ii) Give one mathematical and one physical reason for the use of Hermite basis functions for the
Euler–Bernoulli beam bending problem instead of the Lagrange basis functions considered as the
standard ones for finite element methods.

(iii) Let us use the Hermite basis functions for the following Euler–Bernoulli beam bending problem:

– the distributed loading is constant;

– the bending rigidity is constant;

– one end of the beam (say, at x = 0) is clamped (say, built into a wall as for a cantilever);

– the other end (say, at x = L) is free to move in the direction perpendicular to the central axis
of the beam, but the rotation at this end point has been prevented by a roller support rigidly
joined to beam but sliding along a rail crossing the end point in the direction perpendicular
to the central axis.

Construct the corresponding finite element equation system for the problem by adopting one single
element relying either on the actual line segment (0, L) or the typical reference element line segment
(−1, 1) – for both of which, the Hermite basis functions can be found in the course material – or
by relying on the line segment (0, 1) for which the Hermite basis functions take the following form:

φ1(x) = 1− 3x2 + 2x3,

φ2(x) = x− 2x2 + x3,

φ3(x) = 3x2 − 2x3,

φ4(x) = −x2 + x3.

Model solutions to Problem 3

(i) 1 p. The FEM requires calculating stiffness matrix and force vector entries in every element of
the mesh, and the reference element enables doing this in an efficient way: defining and dealing
with shape functions and numerical integration cab be accomplished only in one simple element
(although some linear transformations and changes of variables are needed) and the results are
then repeated when forming the system equations in the assemly proccess of the system equation.

(ii) 2 p. (1) A mathematical reason: The strain energy in the variational (weak) formulation includes
second-order derivatives of the primary problem variable (deflection), which means that for ob-
taining a conforming finite element method the trial and test functions need to be C1-continuous
functions (that the Hermite basis functions provide). (The Lagrange basis functions provide only
C0-continuous approximation functions.)

(2) A physical reason: It is natural to give external moments for beams as boundary conditions,
and moments should be associated to rotations (moment times rotation gives energy, which means
that they are conjugate quantities of each other). The Hermite basis functions provides at the end
points of each element both deflection and rotation degrees of freedom, hence serving both external
forces and moments, respectively. (The Lagrange basis functions provide only deflection degrees of
freedom conjugate to forces.)

(iii) 3 p. One single Hermite element has deflection and rotation degrees of freedom at both ends. Since
one end of the beam (say, at x = 0) is clamped both degrees of freedom at this node (d1, d2 below)
are set to zero, and since the rotation of the other end (say, at x = L) is prevented the rotation
degree of freedom at this node (d4 below) is set to zero – leaving only one deflection degree of
freedom (d3 below) as the only unknown of the problem:

wh(x) = N1(x)d1 + ...+N4(x)d4 = N3(x)d3

The basis function corresponding to this deflection degree of freedom is

N3(x) = 3(x/L)2 − 2(x/L)3
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since N3(L) = 1 and N ′
3(L) = 0 (one can assume, for simplicity, that L = 1).

The corresponding stiffness matrix entry is

k33 =

∫ L

0

EIN ′′
3 (x)N ′′

3 (x) dx = ... = 12EI/L3.

The corresponding load vector entry is

f3 =

∫ L

0

f0N3(x)dx = ... = −f0L/2.

The finite element system equation takes the form

(12EI/L3)d3 = k33d3 = f3 = −f0L/2

which gives the deflection value approximation wh(L) = d3 = −f0L
4/24EI.
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