A?
 Matrix Algebra MS-A0001 Hakula/Nyman

 T

 T}

Course Exam, 14.12.2021

Please follow the instruction given on the exam page. Every question carries an equal weight, similarly every part of a question carries an equal weight, unless otherwise specified. There are five problems in the exam.

Problem 1

a) Show that if P is a permutation matrix, then $\operatorname{det}(P)=1$ or -1 .
b) Let $\mathbf{w}=\mathbf{u} \times \mathbf{v}$. Show that $\|\mathbf{w}\|^{2}=\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2}$.
c) Let $u, v \in \mathbb{R}^{3}$. Show that $\operatorname{det}\left(u v^{T}\right)=0$.

Problem 2 Find the decomposition $A=L D L^{\mathrm{T}}$, where

$$
A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & \alpha
\end{array}\right)
$$

for all $\alpha \in \mathbb{R}$.
Problem 3 Solve the linear system of equations $A x=b$ using Gaussian elimination, when

$$
A=\left(\begin{array}{rrrr}
1 & 3 & 5 & -2 \\
3 & -2 & -7 & 5 \\
2 & 1 & 0 & 1
\end{array}\right), \quad b=\left(\begin{array}{r}
11 \\
0 \\
3
\end{array}\right) .
$$

Problem 4 Find the angle between the eigenvectors of

$$
\left(\begin{array}{cc}
1 & 1 \\
0 & 1+t
\end{array}\right)
$$

as a function of the parameter t. What is the relation between this angle and the linear independence of the eigenvectors?

Problem 5 Let A be a 3×3-matrix. Its eigenvalues are

$$
\lambda_{1}=1, \quad \lambda_{2}=1 / 2, \quad \lambda_{3}=1 / 3,
$$

and the corresponding eigenvectors

$$
v_{1}=(1,1,1)^{\mathrm{T}}, v_{2}=(0,1,1)^{\mathrm{T}}, v_{3}=(0,0,1)^{\mathrm{T}} .
$$

Find $\lim _{k \rightarrow \infty} A^{k}$.

