Exercise 1.

The golf ball is hit at A with a speed of $v_A = 40 \,\mathrm{m/s}$ and directed at an angle of 30° with the horizontal as shown. Determine the distance d where the ball strikes the slope at B. (15pts)

Exercise 2.

The pipe has a length of 3 m and a mass of 500 kg. It is attached to the back of the truck using a 0.6-m-long chain AB. If the coefficient of kinetic friction at C is $\mu_k = 0.4$, determine the acceleration of the truck if the angle $\theta = 10^{\circ}$ with the road as shown. (20pts)

Exercise 3.

Cable is unwound from a spool supported on small rollers at A and B by exerting a force $T=300\,\mathrm{N}$ on the cable. Compute the time needed to unravel 5 m of cable from the spool if the spool and cable have a total mass of 600 kg and a radius of gyration of $k_O=1.2\,\mathrm{m}$. For the calculation, neglect the mass of the cable being unwound and the mass of the rollers at A and B. The rollers turn with no friction. (20pts)

Exercise 4.

The 12-kg slender rod is attached to a spring, which has an unstretched length of 2 m. If the rod is released from rest when $\theta = 30^{\circ}$, determine the angular velocity of the rod the instant the spring becomes unstretched. (20pts)

Exercise 5.

If member AB has the angular motion shown, determine the velocity and acceleration of point C at the instant shown. (25pts)

