Exercise 1.

The golf ball is hit at A with a speed of $v_{A}=$ $40 \mathrm{~m} / \mathrm{s}$ and directed at an angle of 30° with the horizontal as shown. Determine the distance d where the ball strikes the slope at B. (15pts)

Exercise 2.

The pipe has a length of 3 m and a mass of 500 kg . It is attached to the back of the truck using a $0.6-\mathrm{m}$-long chain $A B$. If the coefficient of kinetic friction at C is $\mu_{k}=0.4$, determine the acceleration of the truck if the angle $\theta=10^{\circ}$ with the road as shown. (20pts)

Exercise 3.

Cable is unwound from a spool supported on small rollers at A and B by exerting a force $T=300 \mathrm{~N}$ on the cable. Compute the time needed to unravel 5 m of cable from the spool if the spool and cable have a total mass of 600 kg and a radius of gyration of $k_{O}=1.2 \mathrm{~m}$. For the calculation, neglect the mass of the cable being unwound and the mass of the rollers at A and B. The rollers turn with no friction. (20pts)

Exercise 4.

The $12-\mathrm{kg}$ slender rod is attached to a spring, which has an unstretched length of 2 m . If the rod is released from rest when $\theta=30^{\circ}$, determine the angular velocity of the rod the instant the spring becomes unstretched. (20pts)

Exercise 5.

If member $A B$ has the angular motion shown, determine the velocity and acceleration of point C at the instant shown. (25pts)

