
CS-E4850 Computer Vision

Exam 17th of December 2021, Lecturer: Juho Kannala

There are plenty of questions. Possibly many more than can be solved in the given time
but answer as many as you can in the available time. The number of points awarded from
different parts is shown in parenthesis at the end of each question. The maximum score
from the whole exam is 42 points.

The exam must be taken completely alone. Showing or discussing it with
anyone is forbidden!

1 Image filtering (6 p)

(a) Filter image J with the gaussian filter G using zero padding. (0.5 p)

J =

2 4 0

0 1 0

0 3 2

G = 1
16

1 2 1

2 4 2

1 2 1

(b) Filter the above image J with a 3×3 median filter using zero padding. (0.5 p)

(c) Is it more efficient to filter an image with two 1D filters as opposed to a 2D
filter? Why? How does the computational complexity relate to the size of the
filter kernel (with K×K pixels) in both cases? (1 p)

(d) Is the following convolution kernel separable? If so, separate it. (0.5 p)

H =

4 2 6 8

0 0 0 0

2 1 3 4

8 4 12 16

The bilateral filter consists of a domain kernel d(i, j, k, l) and a range kernel r(i, j, k, l).
I is the original image. The coordinates (i, j) represent the pixel to be filtered and
(k, l) the neighbouring pixels of the window centered in (i, j). σd and σr are smoot-
hing parameters and I(i, j) and I(k, l) are the intensity of pixels (i, j) and (k, l)
respectively.

d(i, j, k, l) = exp

(
−(i− k)2 + (j − l)2

2σ2
d

)
, r(i, j, k, l) = exp

(
−∥I(i, j)− I(k, l)∥2

2σ2
r

)

I =

0 0 0 0 0

0 0 0 0 0

0 0 255 0 0

0 0 0 0 0

0 0 0 0 0

(e) Briefly explain the advantages of a bilateral filter compared to a Gaussian
filter. (0.5 p)



(f) Construct 3×3 range- and domain kernels at the center pixel (ic, jc) of I marked
with a box. Let σd = σr = 1. (1 p)

(g) The bilateral weight function is the multiplication of the range- and domain
kernels. Construct the 3×3 bilateral weight function w(ic, jc, k, l) and briefly
discuss what limitation of a bilateral filter your result indicates. (1 p)

Your camera produces 1D images and your task is to detect edges in the images.
Consider the example 1D image L below:

L = 133 132 121 110 100 80 61 60

(h) Propose a suitable kernel for edge detection in 1D images. (0.5 p)

(i) Using your kernel indicate where an edge would be detected in image L. (0.5 p)

2 Image formation (5 p)

Consider a camera with a camera projection matrix P and a 3D-point X in homo-
genous coordinates:

P =

 5 −14 2 17
−10 −5 −10 50
10 2 −11 20

 X =


4
2
2
1


(a) What are the 3D Cartesian coordinates of the point X? (0.5 p)

(b) Compute the Cartesian image coordinates of the projection of X. (0.5 p)

(c) We project point Z and get the following result PZ =
[
1 1 0

]T
. What is

the interpretation of the projection of the point Z? (1 p)

(d) Compute the Cartesian coordinates of the camera center. (1 p)

(e) Show that the two cameras P1 = K1[R |T ] and P2 = K2[R |T ] have the same
camera center. (0.5 p)

Now we switch to an ideal pinhole camera with the following intrinsic parameters:

• 10 mm focal length

• Each pixel is 0.02 mm × 0.02 mm

• Pixel coordinates start at (0,0) in the upper left corner of the image.

• The image principal point is at pixel (500,500)

• No distortion

The world reference system is the same as the camera’s canonical reference system
(camera is at the world origin and pointed towards the positive z-axis).

(f) Calculate the intrinsic- and extrinsic matrix. (1 p)

(g) A point X has coordinates (50, 150, 800) centimeters in the world reference
system. Compute the projection of the point into image coordinates. (0.5 p)
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3 Triangulation (5 p)

Two cameras are looking at the same scene. The projection matrices of the two
cameras are P1 and P2. They see the same 3D point X = (X,Y, Z)⊤. The obser-
ved coordinates for the projections of point X are x1 and x2 in the two images,
respectively. The numerical values are as follows:

P1 =

1 0 0 0
0 1 0 0
0 0 1 0

 , P2 =

1 0 0 1
0 0 −1 1
0 1 0 1

 , x1 =

[
2
4

]
, x2 =

[
0

−1.5

]
.

(a) Present a derivation for the linear triangulation method and explain how X
can be solved using that approach in the general case (i.e. no need to compute
with numbers in this subtask). (1 p)

(b) Compute the 3D coordinates of the point X using the given numeric values for
the camera projection matrices and image points. It is sufficient to just give
the result. (Hint: You can calculate this with a computer or using pen and
paper. In the latter case it may be easiest to write the projection equations in
homogeneous coordinates by explicitly writing out the unknown scale factors,
and to solve X,Y, Z and the scale factors directly from those equations.) (1 p)

(c) A third camera P3 is added to the scene. Describe how the linear triangula-
tion method above can be extended to use the information from all the three
cameras. (1 p)

(d) If there is noise (i.e. measurement errors) in the observed image coordinates
of point X, the linear triangulation method above is not the optimal choice
but a nonlinear approach can be used instead. What error function is typically
minimized in the nonlinear approach? (1 p)

(e) How does the nonlinear triangulation approach differ from the bundle adjust-
ment procedure which is commonly used in structure-from-motion problems
(i.e. how is the bundle adjustment problem different)? (1 p)

4 Local feature detection and description (4 p)

Below we have computed the gradients of an image at each pixel:

Ix =

3 2 1 -1 -1

4 3 2 0 -1

4 3 4 2 1

1 1 3 2 2

Iy =

2 3 1 1 -1

2 3 2 -1 -1

2 4 4 1 2

-1 0 3 2 3

(a) Compute the second moment matrix M for the coloured 3 × 3 window W .
Assume that the weighting function w is a constant w(x, y) = 1

M =


∑
x,y

w(x, y)I2x
∑
x,y

w(x, y)IxIy∑
x,y

w(x, y)IxIy
∑
x,y

w(x, y)I2y


(0.5 p)
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(b) Compute the value of the corner response function when α = 0.04:

R = det(M)− α trace(M)2

(0.5 p)

(c) How would you characterise the ”cornerness”of window W and why? (1 p)

Let’s assume that we detected SIFT regions from two images (i.e. circular regions
with assigned orientations) of the same textured plane.

(d) What is the minimum number of SIFT region correspondence pairs needed for
computing a similarity transformation between the pair of images? (1 p)

(e) How do we compute a histogram of gradient orientations when generating a
SIFT descriptor? (1 p)

5 Geometric 2D transformations (4 p)

(a) A rectangle with corners A = (−1, 1), B = (1, 1), C = (1,−1), D = (−1,−1)
is transformed by a transformation so that the new corners are A′ = (1, 3),
B′ = (3, 3), C ′ = (−2, 1), D′ = (−6, 1), respectively. An affine transformation
does not explain the observations perfectly, but there is reason to believe that
the transformation is affine and there is noise in the observations. Write down
the equations to solve the transformation using the least squares method.
Note: You don’t actually have to numerically solve the transformation, just
present a derivation of the solution. (1 p)

(b) Present a derivation of the direct linear transformation (DLT) algorithm for
fitting a homography to the above set of four point correspondences. It is
sufficient to explain how the solution can be computed but numerical solution
is not required. (1 p)

(c) Describe the main stages of a RANSAC algorithm, which could be used to fit
either affine transformation or a homography to a set of point correspondences.
What is the minimal size of the random sample of correspondences in these
two cases (i.e. affine and homography). Which geometric transformation model
is used in panoramic image stitching and why? (2 p)

6 Neural networks and object detection (7 p)

The small neural net in the figure below uses ReLU as the nonlinearity at the output
of each neuron. The values specified in the hollow circles are biases, and the values
along the edges are gains.
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(a) Are all the layers in the network above fully connected? (1 p)

(b) What is the output y from the net above when the input is as follows? (1 p)

x1 = 2 and x2 = 5

(c) What is the gradient g of the output y of the network above with respect to
the weight vector

w = [w1, w2, w3, w4, w5, w6, w7, w8, w9]
T

when the input has the values given in the previous problem? Just give the
result if you are confident of your answer. (2 p)

(d) With image data convolutional neural networks are much more popular than
fully connected neural networks. Why is this? (1 p)

(e) Especially deep convolutional neural networks have proven to be effective.
What function do the earlier layers (a.k.a. the base network) of a deep convo-
lutional neural network serve and why are they often re-used from pre-existing
networks such as VGG16. (1 p)

(f) SSD object detector evaluates only a small set (e.g. 4) of default boxes of
different aspect ratios at each location. How can it detect large and small
objects if the boxes are of fixed size? (1 p)

7 Feature tracking (5 p)

Let I(x) and J(x) be two grayscale images of the same scene taken from slightly
different viewpoints and possibly slightly different orientations. We’d like to track
a point xI in image I to it’s coordinate xJ in image J . That is we’d like to know
the two dimensional displacement d∗ of point xI such that:

xJ = xI + d∗

5



To approximate d∗ we look at a window (small square) W (xI) of odd side-length
2h+1 pixels centered around the point xI in image I and search for d that minimizes
the dissimilarity between the windows in both images:

d∗ = argmin
d

ϵ(d)

where the dissimilarity ϵ(d) is defined as a sum over the whole image x = (x1, x2):

ϵ(d) =
∑
x

[J(x+ d)− I(x)]2w(x− xI)

w(x) is the indicator function of a W (x):

w(x) =

{
1 if |x1| ≤ h and |x2| ≤ h
0 otherwise.

We assume that the motion of the camera between the two images is so small that
the magnitude of d∗ is much smaller than the diameter ofW (xI) and use an iterative
approach so that we can formulate the problem as follows: find a step displacement
st that, when added to dt, yields a new displacement dt+1 at each iteration t such
that ϵ(dt + st) is minimized. We add dt into x as follows Jt(x) = J(x + dt) and
approximate the image function Jt(x + st)(= J(x + dt + st)) with its first-order
Taylor expansion:

Jt(x+ st) ≈ Jt(x) + [∇Jt(x)]
T st

Minimizing ϵ(dt + st) leads to a linear system of equations Ast = b where

A =
∑
x

∇Jt(x)[∇Jt(x)]
Tw(x− xI) and b =

∑
x

∇Jt(x)[I(x)− Jt(x)]w(x− xI)

The overall displacement is then the sum of all the steps:

d∗ =
∑
t

st

(a) Show that minimizing ϵ(dt+ st) leads to a linear system of equations Ast = b
. (1 p)

NOTE: the problems (b)-(e) below don’t require that you have solved problem (a).

Assuming a window size of 3 × 3 (h = 1) and an initial guess of displacement
d0 = [0, 0]T . For a particular value of xI , the two components of ∇J0(x) inside the
window W (xI) are:

∂J0
∂x1

=

10 10 10

10 10 10

10 10 10

and
∂J0
∂x2

=

0 0 0

0 0 0

0 0 0

and the difference between the two images is:

I(x)− J0(x) =

1 1 1

1 1 1

1 1 1
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(b) Compute A and b. (1 p)

(c) Does the feature at xI suffer from the aperture problem? Briefly justify your
answer. (1 p)

(d) Give the minimum-norm solution s0 to the linear system As0 = b (1 p)

(e) Assume that further iterations of the Lucas-Kanade algorithm do not change
the solution s0 much. Does your answer to the previous question imply that
the image motion between I and J at xI is approximately horizontal? Briefly
justify your answer. (1 p)

8 Camera calibration (6 p)

Camera calibration means that given a sufficient amount of points with known 3D
coordinates and their image projections we can estimate the camera parameters.
Let us consider a simplified case where only the height of the 3D points varies. That
is to say we don’t know the position of the rigidly mounted camera or its camera
parameters but we know the x-coordinates(the z and y coordinates don’t change)
of some calibration points and their image projections. We measure the following
data:

Calibration Point x-coordinate Image Coordinates (u,v)

Point 1 50 mm (100,250)
Point 2 100 mm (140,340)

(a) Assume a projective camera model and write the matrix equation that desc-
ribes the relationship between world coordinates (x) (the height) and image
coordinates (u, v) (the pixel coordinates where the point is projected in the
image). Give your answer using homogeneous coordinates and a projection
matrix containing the unknown camera parameters. (1 p)

(b) How many degrees of freedom does this transformation have? (0.5 p)

(c) How many calibration points and their associated image coordinates are requi-
red to solve for all of the unknown parameters in the projective camera model?
. (0.5 p)

(d) Assume you have access to more calibration points and their associated image
coordinates than required according to your answer in (c). Are the additional
points useful or redundant? How would you solve for the parameters in this
case where there are more points than required? (1 p)

(e) Assume that the camera is now calibrated. Given a new point and only its
associated u image coordinate solve for the height (x-coordinate) of the point.
Present the equation(s) that are used to solve for the height. (1 p)

(f) We now also have access to the associated v image coordinate of the new point,
but calculating the height of the point using the v-coordinate gives a slightly
different height then when using the u image coordinate. Is this a problem and
how would you calculate the height in this case? (1 p)

(g) If in each calibration image we only measured the u pixel coordinate of the
point, could the camera still be calibrated? If so, how many calibration points
are required? If not, briefly describe why not. (1 p)
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