Exam Questions		Aalto University School of Electrical Engineering
DISTRIBUTED GENERATION TECHNOLOGIES	Course Code: ELEC-E8424	

Q1: Explain 5 types of the supportive functionalities that can be provided by DG technologies for the power grid? (5%)

Q2: Figure 1 shows the active power sharing between the main grid, load and DG. DG is connected to the grid at $\mathrm{t}=0.1 \mathrm{sec}$ and supply the load power.
At $\mathrm{t}=0.2 \mathrm{sec}$ load increases which leads to overshoot and swing at this time (blue color). Explain why the overshoot and the swing occur at $t=0.2 \mathrm{sec}$ and what is your solution to minimize the overshoot and the swing. (10 \%)

Figure 1. Active power sharing between the main grid, load, and DG.

Exam Questions		Aalto University School of Electrical Engineering
DISTRIBUTED GENERATION TECHNOLOGIES	Course Code: ELEC-E8424	

Q3: Figure 2 shows the inner control loops of the current $i_{c d}$ in a grid-connected converter. Calculate the values of k_{p} and k_{i} for the best transient response during the synchronization of converter with power grid. (15 \%)

Fig. 2. Equivalent diagram of d-axis current control loop.

Q4: Figure 3 shows the general model of a grid-connected converter. Find the general dynamic equation of the proposed model. (20 \%)

Figure 3: General model of a grid-connected converter.

