MS-E1461 Hilbert spaces

Points also for good effort! You may use websites and the course material. Yet, the problems must be solved individually. Please indicate the sources you used.

Note: In the following, H is an infinite-dimensional complex Hilbert space. with inner product $(u, v) \mapsto\langle u, v\rangle$ and norm $u \mapsto\|u\|=\langle u, u\rangle^{1 / 2}$.

1. Let v_{1}, v_{2} be two linearly independent vectors in a Hilbert space.
(a) Find an orthonormal basis for vector subspace $Z=\operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right)$.
(b) Find the formulas for the orthogonal projection P onto Z, and for the orthogonal projection Q onto the orthogonal complement of Z.
(c) Sketch also a picture (or pictures) how these vectors and projections look like in case of a 3-dimensional real Hilbert space.
2. In this problem, Hilbert space H is Lebesgue space $L^{2}\left(\mathbb{R}^{+}\right)$.
(a) Show that $B(u, v)=\langle L u, L v\rangle$, where

$$
B(u, v):=\int_{0}^{\infty} \int_{0}^{\infty} \frac{u(x) v(y)^{*}}{x+y} \mathrm{~d} x \mathrm{~d} y \quad \text { and } \quad L v(x):=\int_{0}^{\infty} \mathrm{e}^{-x y} v(y) \mathrm{d} y .
$$

(b) Show that here B is a bounded Hermitian form for which $B(u, u) \geq 0$. (Hint: Apply Hilbert's Inequality.)
3. The exponential of $A \in \mathscr{B}(H)$ is defined by $\exp (A):=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}$.
(a) Show that $\exp (A) \exp (B)=\exp (A+B)$ if $A B=B A$. Show also that $\frac{\mathrm{d}}{\mathrm{d} t} \exp (t A)=A \exp (t A)$, where derivative with respect to variable $t \in \mathbb{R}$ is defined as the limit of the difference quotient (as usual).
(b) Show that $A^{*}=A$ if and only if $\exp (\mathrm{i} t A)$ is unitary for all $t \in \mathbb{R}$.
(Hint: For $U=\exp (\mathrm{i} t A)$, insert $I=U^{*} U$ to $0=\left.\frac{\mathrm{d}}{\mathrm{d} t} I\right|_{t=0}=\ldots$)
4. For $v: \mathbb{Z}^{+} \rightarrow \mathbb{C}$, define $K v: \mathbb{Z}^{+} \rightarrow \mathbb{C}$ by

$$
K v(x):=(-3)^{-x} v(x+3)
$$

(a) Show that $K: H \rightarrow H$ is a compact linear operator in $H=\ell^{2}\left(\mathbb{Z}^{+}\right)$.
(b) Find the eigenvalues and eigenvectors of $L=K^{*} K$. Diagonalize L.
(c) Find the SVD (Singular Value Decomposition) for K.

