MS-E1461 Hilbert spaces (Aalto University, Turunen) Examination on Tuesday 21.12.2021, at 9:00-13:00

Points also for good effort! You may use websites and the course material. Yet, the problems must be solved individually. Please indicate the sources you used.

Note: In the following, *H* is an infinite-dimensional **complex** Hilbert space. with inner product $(u, v) \mapsto \langle u, v \rangle$ and norm $u \mapsto ||u|| = \langle u, u \rangle^{1/2}$.

- 1. Let v_1, v_2 be two linearly independent vectors in a Hilbert space.
 - (a) Find an orthonormal basis for vector subspace $Z = \text{span}(\{v_1, v_2\})$.
 - (b) Find the formulas for the orthogonal projection P onto Z, and for the orthogonal projection Q onto the orthogonal complement of Z.

(c) Sketch also a picture (or pictures) how these vectors and projections look like in case of a 3-dimensional real Hilbert space.

- 2. In this problem, Hilbert space H is Lebesgue space $L^2(\mathbb{R}^+)$.
 - (a) Show that $B(u, v) = \langle Lu, Lv \rangle$, where

$$B(u,v) := \int_0^\infty \int_0^\infty \frac{u(x) v(y)^*}{x+y} \, \mathrm{d}x \, \mathrm{d}y \quad \text{and} \quad Lv(x) := \int_0^\infty e^{-xy} v(y) \, \mathrm{d}y.$$

(b) Show that here B is a bounded Hermitian form for which $B(u, u) \ge 0$. (Hint: Apply Hilbert's Inequality.)

3. The exponential of $A \in \mathscr{B}(H)$ is defined by $\exp(A) := \sum_{k=0}^{\infty} \frac{A^k}{k!}$.

(a) Show that $\exp(A) \exp(B) = \exp(A+B)$ if AB = BA. Show also that $\frac{d}{dt} \exp(tA) = A \exp(tA)$, where derivative with respect to variable $t \in \mathbb{R}$ is defined as the limit of the difference quotient (as usual).

(b) Show that $A^* = A$ if and only if $\exp(itA)$ is unitary for all $t \in \mathbb{R}$.

(Hint: For $U = \exp(itA)$, insert $I = U^*U$ to $0 = \frac{d}{dt}I|_{t=0} = ...$)

4. For $v: \mathbb{Z}^+ \to \mathbb{C}$, define $Kv: \mathbb{Z}^+ \to \mathbb{C}$ by

$$Kv(x) := (-3)^{-x} v(x+3).$$

- (a) Show that $K: H \to H$ is a compact linear operator in $H = \ell^2(\mathbb{Z}^+)$.
- (b) Find the eigenvalues and eigenvectors of $L = K^*K$. Diagonalize L.
- (c) Find the SVD (Singular Value Decomposition) for K.