Exercise 1.

Determine the magnitude and orientation θ of \mathbf{F}_B so that the resultant force is directed along the positive *y*-axis and has a magnitude of 1500 N. (10pts)

Exercise 2.

Determine the force in members BC, HC, and HG. State if these members are in tension or compression. (20pts)

Exercise 3.

Draw the shear and moment diagrams for the beam. Set P = 20 kN, a = 1.5 m, L = 6 m. (20pts)

Exercise 4.

Small packages traveling on the conveyor belt fall off into a 1-m-long loading car. If the conveyor is running at a constant speed of $v_c = 2 \text{ m/s}$, determine the smallest and largest distance R at which the end A of the car may be placed from the conveyor so that the packages enter the car. (10pts)

Exercise 5.

The spool has a mass of 50 kg and a radius of gyration of $k_O = 0.280$ m. If the 20-kg block A is released from rest, determine the velocity of the block when it descends 0.5 m. (20pts)

Exercise 6.

If the flywheel is rotating with an angular velocity of $\omega_A = 6 \text{ rad/s}$, determine the angular velocity of rod *BC* at the instant shown. (20pts)

