Exercise 1.

Determine the magnitude and orientation θ of \mathbf{F}_{B} so that the resultant force is directed along the positive y-axis and has a magnitude of 1500 N . (10pts)

Exercise 2.

Determine the force in members $B C, H C$, and $H G$. State if these members are in tension or compression. (20pts)

Exercise 3.

Draw the shear and moment diagrams for the beam. Set $P=20 \mathrm{kN}, a=1.5 \mathrm{~m}, L=6 \mathrm{~m}$. (20pts)

Exercise 4.

Small packages traveling on the conveyor belt fall off into a $1-\mathrm{m}$-long loading car. If the conveyor is running at a constant speed of $v_{c}=2 \mathrm{~m} / \mathrm{s}$, determine the smallest and largest distance R at which the end A of the car may be placed from the conveyor so that the packages enter the car. (10pts)

Exercise 5.

The spool has a mass of 50 kg and a radius of gyration of $k_{O}=0.280 \mathrm{~m}$. If the $20-\mathrm{kg}$ block A is released from rest, determine the velocity of the block when it descends 0.5 m . (20pts)

Exercise 6.

If the flywheel is rotating with an angular velocity of $\omega_{A}=6 \mathrm{rad} / \mathrm{s}$, determine the angular velocity of $\operatorname{rod} B C$ at the instant shown. (20pts)

