## Abstract Algebra Exam, MS-C1081

Department of Mathematics and Systems Analysis, Aalto University

## 23.02.2022

You may bring to the exam a memory aid sheet of size A4. The memory aid sheet must be hand-written, contain text on one side only, and have your name and student number written in the top right corner. You do not need to return the memory aid sheet.

- If you are taking MS-C1081 course exam (KT), then do problems 1-5. Your final points for the course will be exam points + exercise points. You may choose to do the option below, in which case your final points for the course will be maximum of the two options.
- If you are taking MS-C1081 general exam (T0), then do problems 1-6. Your final points for the course will be 5/3\*(exam points).

## Problems:

- 1. (a) (5 points) Let p be a fixed prime. Let  $R^p$  be the set of rationals whose denominator is a power of p ( $p^i$ ,  $i \ge 0$ ). Prove that  $R^p$  is an abelian group under ordinary addition of rationals.
  - (b) (4 points) Let G be a group. The center of G is

$$C = \{a \in G : ax = xa \text{ for all } x \in G\}.$$

Prove that C is a subgroup of G.

- 2. Recall that  $S_3$  is the set of all permutations of  $\{1,2,3\}$  and it forms a group under taking compositions.
  - (a) (5 points) Let H be the cyclic subgroup (of order 2) of  $S_3$  generated by  $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ . Show that no left coset of H (except H itself) is also a right coset.
  - (b) (2 points) Let K be the cyclic subgroup (of order 3) of  $S_3$  generated by  $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ . Show that every left coset of K is also a right coset of K.
  - (c) (4 points) Point (b) proves that K is a normal subgroup of  $S_3$ . Write down the Cayley table for the quotient group  $S_3/K$ .

- 3. (a) (5 points) Let  $(G, \cdot)$  be any group and let a be any element of G. Let  $\phi : \mathbb{Z} \to G$  be defined by  $\phi(n) = a^n$ . Show that  $\phi$  is a homomorphism. Describe the image and the possibilities for the kernel of  $\phi$ .
  - (b) (5 points) Mark each of the following true or false. Justify your answer.
    - i. For any two groups G and G', there exists a homomorphism of G into G'.
    - ii. A group homomorphism may have an empty kernel.
    - iii. It is not possible to have a nontrivial homomorphism of some finite group into some infinite group.
    - iv. There is a nontrivial group homomorphism  $\phi: \mathbb{Z}_{12} \to \mathbb{Z}_5$ .
    - v. There is a nontrivial group homomorphism  $\phi: \mathbb{Z}_3 \to \mathbb{Z}$ .
- 4. (a) (4 points) List all subgroups of the group  $(\mathbb{Z}_{10}, +)$ . Justify why the list of subgroups is complete.
  - (b) (2 points) Determine the order of each element of  $(\mathbb{Z}_{10}, +)$  and list the generators of  $(\mathbb{Z}_{10}, +)$ .
  - (c) (4 points) Let G be a group and  $\phi: \mathbb{Z}_{10} \to G$  a group homomorphism. What are the possible images  $\phi(\mathbb{Z}_{10})$  of  $\mathbb{Z}_{10}$  under the group homomorphism  $\phi$  (up to isomorphism)? Justify your answer.
- 5. (a) (2 points) Decide whether the following operations of addition and multiplication are closed on the set, and give a ring structure. If a ring is formed, show that it is a ring and state whether the ring is commutative. If a ring is not formed, tell why this is the case.
  - i.  $\mathbb{Z}^+$  (the set of strictly positive integers) with the usual addition and multiplication.
  - ii. The set of qi for  $q \in \mathbb{Q}$  with the usual addition and multiplication. Here i denotes the imaginary unit.
  - (b) (5 points) Let R, R' be rings and  $f: R \to R'$  be a ring homomorphism. Let I be an ideal of R. Prove that f(I) is an ideal of f(R).
  - (c) (3 points) For each of the following rings R, determine the zero-divisors and the set of units.
    - i. The polynomial ring  $\mathbb{R}[x]$ .
    - ii.  $\mathbb{Z} \times \mathbb{Z}$ , where addition and multiplication are defined componentwise.
    - iii.  $\mathbb{R} \times \mathbb{R}$ , where addition and multiplication are defined componentwise.
- 6. (a) (6 points) Let R be a ring with more than one element such that for each nonzero  $a \in R$  there is a unique  $b \in R$  such that aba = a. Prove:
  - i. R has no zero divisors.
  - ii. bab = b.

12.1

- iii. R is a division ring.
- (b) (4 points) Prove that the fields R and C are not isomorphic.