CHEM-E4106 Electrochemistry D

Exam 22.02.2022

- 1. a) What does transport number describe? What is the reason for its existence?
 - b) What is exchange current density? Why is it important to know it?
 - c) During electrochemical reactions both ions and neutral species are transported in an electrochemical cell. Which forces affect their transfer?
 - d) How do you observe charge transfer resistance in an impedance plot (Nyquist plot)?
 - e) What is the role of each electrode in a three-electrode measurement set-up? What are the requirements for each electrode?
 - f) What does Debye length describe? Which parameters affect it?
- 2. Formic acid can be used directly as a fuel in fuel cells. Its kinetic properties are studied in an aqueous electrolyte with a formic acid concentration of 0.5 mol/dm³. The pK_a of formic acid is 3.74 at the temperature of 25°C. Estimate the solution conductivity.
- 3. A Daniell Cell is a classic example of a galvanic cell that turns chemical energy into electrical energy. Inspired by the concept, a modified version has been constructed: Cu(s) | Cu(s) | Cu(NO₃)₂ (aq, 1.25 mol/dm³) || AgNO₃ (aq, 1.5 mol/dm³) | Ag(s) | Cu(s) What is the expected cell potential? You can assume that the Debye-Hückel equation holds for estimating the activities.

4. Hydrogen oxidation and reduction was studied with a PtIr electrode in 0.1 M KOH. The solution was stirred so vigorously that mass transfer can be neglected within the potential range used. The following current-overpotential data was obtained:

hydrogen oxidation		hydrogen reduction	
η / V	<i>i /</i> mA cm ⁻²	η / V	<i>i /</i> mA cm ⁻²
0.041312	10.82366601	-0.00798	1.043358628
0.037287	9.799764063	-0.00898	1.1218324
0.031856	8.28953131	-0.00984	1.295595753
0.027324	7.017295005	-0.01094	1.472784548
0.023764	6.061902573	-0.01146	1.566828514
0.021191	5.284984818	-0.01217	1.653243084
0.016189	4.04090644	-0.01306	1.836504255

Calculate the exchange current density and the charge transfer coefficient $\boldsymbol{\alpha}$ for both the reacitons.

5. Analyze semi-quantitatively the impedance plots below. What quantities can you read from it? Explain the shape of the plot.

