CHEM-E4106 Electrochemistry D

Exam 23.2.2021

- 1. a) Why do ions have activity coefficients less than one already in diluted electrolytes?
 - b) What is limiting current? Why is it important to know it?
 - c) With which mechanisms an ion can move in a solution?
 - d) How do you observe diffusion in an impedance plot (Nyquist plot)?
 - e) What is a trace-ion? Why is it used in electrochemical analysis?
 - f) Which forces affect the organization of the double layer?
- A Galvanic cell can be constructed connecting via a slat bridge one beaker contains 0.15 M Cd(NO3)₂ and a Cd metal electrode and the other beaker contains 0.20 M AgNO₃ and a Ag metal electrode. Estimate the cell voltage of

Cd(s)|Cd(NO₃)₂(aq, 0.15 mol dm⁻³)|AgNO₃(aq, 0.20 mol dm⁻³)|Ag(s)

at 25 °C by taking into account the activity coefficients estimated *via* the Debye-Hückel equation.

- 3. Slightly soluble CaF₂ is used in toothpastes and when brushing teeth it is dissolved increasing the water conductivity. The solubility constant of CaF₂ at room temperature is 3.30 (mol/dm³)³ whereas the freshwater conductivity is 500 μ S/cm. What is the conductivity of CaF₂ saturated freshwater?
- 4. An electrochemical $Fe^{3+}|Fe^{2+}$ redox reaction was studied on a Pt disk electrode at 298 K and results given the table below were obtained. What are i_0 and α for the anodic and cathodic reactions?

	-50	-80	-100	-120	-150	-200	50	80	100	120	150	200
η												
(mV)												
i	8.01	16.1	25.1	41.0	82.4	264	5.45	-8.71	-11.9	-16.3	-26.0	-56.6
(mA cm ⁻²)												

5. Toyota uses PtCo/C as a cathode electrocatalyst in their automotive polymer electrolyte fuel cell. Oxygen reduction reaction kinetics of this kind of a catalyst synthetized by atomic layer deposition was investigated with a rotating ring electrode in 0.5 M H₂SO₄ using five different rotation rates. The obtained *i*-*E* data is given in the Excel file. Calculate *n* and k^0 using following parameters: $D(O_2) = 1.10^{-5}$ cm² s⁻¹, $c(O_2) = 1.60^{-6}$ mol cm⁻³ and v = 0.01 cm² s⁻¹.