

Please follow the instruction given on the exam page. Every question carries an equal weight, similarly every part of a question carries an equal weight, unless otherwise specified. You are not allowed to use a calculator, tables or notes.

PROBLEM 1 Find the derivative of $f(x) = \tanh x$ using Newton's Quotient.

PROBLEM 2 a) Find the limits

$$\lim_{x \to 0} \frac{e^{2x} - 1}{x} \text{ and } \lim_{x \to 1} \frac{(\ln x)^2}{(x - 1)^2}.$$

b) Find the Maclaurin polynomial of degree two for the function $f(x) = e^{2x}$.

PROBLEM 3 Consider Newton's method for solving f(x) = 0. a) Explain how the recurrence formula

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

is derived graphically with the help of the tangent line. (4p) b) Compute one approximation x_1 for $x^4 - 2 = 0$ given $x_0 = 2$. (2p)

PROBLEM 4 Compute the integrals

$$\int_0^2 20(x-2)^4 \, dx \text{ and } \int_0^{\pi^2} \sin(\sqrt{x}) \, dx.$$

Hint: Sometimes $x = u^2$ is a powerful substitution.

PROBLEM 5 Solve $y' = 6xy^3$ given the initial values a) y(0) = 1; b) y(0) = 0. PROBLEM 6 Find the complete solution.

$$\begin{cases} y'' - 3y' + 2y = 10\sin x, \\ y(0) = 0, \\ y'(0) = 0. \end{cases}$$

Formulae:

α	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
	$-1/\sqrt{2}$							
$\cos(\alpha)$	$1/\sqrt{2}$	$\sqrt{3}/2$	1	$\sqrt{3}/2$	$1/\sqrt{2}$	1/2	0	-1
$\tan(\alpha)$	-1	$-1/\sqrt{3}$	0	$1/\sqrt{3}$	1	$\sqrt{3}$	_	0

More:

$$D \arcsin x = \frac{1}{\sqrt{1 - x^2}}, \qquad D \arctan x = \frac{1}{1 + x^2}$$
$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}, \qquad \cos x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$$
$$e^x = \sum_{k=0}^{\infty} \frac{1}{k!} x^k, \qquad \ln(1 + x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k$$
$$\frac{1}{1 - x} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + x^3 + \dots$$