Exam, Aug 31, 2022

Please follow the instruction given on the exam page. Every question carries an equal weight, similarly every part of a question carries an equal weight, unless otherwise specified. You are not allowed to use a calculator, tables or notes.

Problem 1 Find the derivative of $f(x)=\tanh x$ using Newton's Quotient.

Problem 2 a) Find the limits

$$
\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{x} \text { and } \lim _{x \rightarrow 1} \frac{(\ln x)^{2}}{(x-1)^{2}} .
$$

b) Find the Maclaurin polynomial of degree two for the function $f(x)=$ $e^{2 x}$.

Problem 3 Consider Newton's method for solving $f(x)=0$.
a) Explain how the recurrence formula

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

is derived graphically with the help of the tangent line. (4p)
b) Compute one approximation x_{1} for $x^{4}-2=0$ given $x_{0}=2$. (2 p)

Problem 4 Compute the integrals

$$
\int_{0}^{2} 20(x-2)^{4} d x \text { and } \int_{0}^{\pi^{2}} \sin (\sqrt{x}) d x .
$$

Hint: Sometimes $x=u^{2}$ is a powerful substitution.
Problem 5 Solve $y^{\prime}=6 x y^{3}$ given the initial values
a) $y(0)=1$;
b) $y(0)=0$.

Problem 6 Find the complete solution.

$$
\left\{\begin{aligned}
y^{\prime \prime}-3 y^{\prime}+2 y & =10 \sin x, \\
y(0) & =0 \\
y^{\prime}(0) & =0
\end{aligned}\right.
$$

Formulae:

α	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\sin (\alpha)$	$-1 / \sqrt{2}$	$-1 / 2$	0	$1 / 2$	$1 / \sqrt{2}$	$\sqrt{3} / 2$	1	0
$\cos (\alpha)$	$1 / \sqrt{2}$	$\sqrt{3} / 2$	1	$\sqrt{3} / 2$	$1 / \sqrt{2}$	$1 / 2$	0	-1
$\tan (\alpha)$	-1	$-1 / \sqrt{3}$	0	$1 / \sqrt{3}$	1	$\sqrt{3}$	-	0

More:

$$
\begin{array}{rlrl}
D \arcsin x & =\frac{1}{\sqrt{1-x^{2}}}, & D \arctan x & =\frac{1}{1+x^{2}} \\
\sin x & =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}, & \cos x & =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k} \\
e^{x} & =\sum_{k=0}^{\infty} \frac{1}{k!} x^{k}, & \ln (1+x)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^{k} \\
\frac{1}{1-x} & =\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+x^{3}+\ldots &
\end{array}
$$

