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ELEC-E8101 Digital and Optimal Control

Final Exam (15.12.2021)

• All four (4) problems must be answered.

• Clearly show your derivations and justifications. If you have made any extra assumption to
solve the problem, clearly state that assumption in your response.

• You can write the solution as you wish in one (or more) “pdf” file, which contains the solu-
tions such that it can be seen how you have solved the problems. You can use handwriting, but
the result must be well readable. Please keep your solutions just like you made and submitted
them, in case something went wrong with the submission or need to be checked afterwards.

• The exam is “open book” so you can have the course material (lectures, exercises, homework,
Databook, etc) at your disposal. But you must not take help from any other person while
taking the exam.

• Electronic calculators and computer software can be used, but plots (if any) should be
drawn in hand and justified.

• With your signature (on the answer sheet you will submit) you assert that you have followed
the above regulations.

Good luck!



1. a) Consider a unit-feedback system with open-loop transfer function given below:

F (z) =
Y (z)

U(z)
=

K(z + 1)

z2 − 1.6z + 0.6

i) Compute the inverse z-transform of this transfer function F (z) using partial fraction
expansion. Show your calculations. [2p]

ii) Evaluate the “closed-loop” system stability using the Jury stability criterion. Find
the values of gain K for which the closed-loop is stable. [2p]

b) Consider a causal, discrete-time, linear time-invariant system with transfer function

G(z) =
z2

(z − a1)(z − a2)

where a1 = 0.8ejπ/6 and a2 = 0.8e−jπ/6. In the following questions, approximately
means that you should not use calculator, but rather give approximations and explain
the approximations.

i) Draw the pole-zero diagram of G(z). Is the system stable? [2p]

ii) Find the angle (or phase) at which the magnitude of G(z), |G(ejω)| obtains its
maximum, denoted by ωmax. [2p]

iii) Approximately determine the magnitude |G(ejω)| and phase ∠G(ejω) at ωmax. [2p]
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2. In the target tracking problems, the exact dynamics of the moving target is usually unknown.
A typical solution is to approximately model the sampled-data target dynamics (in discrete-
time) assuming it has nearly constant velocity in the 2D space. The dynamics, then, becomes
in the state-space form as,

z(k + 1) = Fz(k) + Γu(k), z(k) =


px(k)
py(k)
vx(k)
vy(k)

 , F =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 , Γ =


T 2

2 0

0 T 2

2
T 0
0 T


where the vector z represents the positions px and py and velocities vx and vy of the target
in the x and y directions in 2D plane, respectively, and constant T is the sampling period.
Similarly, input u has two entries in ux and uy in x and y directions. Assume that the
measured variables (the outputs) are the position of the target and,

y(k) = Cz(k) =

(
1 0 0 0
0 1 0 0

)
z(k)

In the following questions, justify your answers for different values of the sampling period T
(if needed).

a) Find the difference equation for both position and velocity only for one dimension, for
example, for the x-coordinates. Then, find the discrete-time (impulse) transfer function.
Assume zero initial conditions. [3p]
Hint: notice that the dynamics for x and y coordinates are decoupled.

b) Comment on the stability of the system, is it stable, marginally stable, or unstable?
justify your answer. [1p]

c) Is the system observable (or detectable) and reachable (or controllable)? Justify your
answer. [3p]

d) For sampling T = 2, design an observer to locate the closed-loop poles at p1 = 0.5 and
p2 = 0.5. [2p]

e) Design a Luenburger observer with deadbeat strategy. [2p]

f) For general sampling period T , design a deadbeat controller for stability over finite time-
steps. How many steps are needed for the controller to drive the closed-loop system to
zero? [3p]



3. Consider a controller in the (continuous-time) form,

H(s) =
42(s+ 4.4)

s+ 18.5

For the questions below clearly show your calculations or explain how you got the answer.

a) Find the frequency ω0 at which the the phase of H(jω) is maximum value. Find the
frequency and gain of H(jω) at ω0. [3p]

b) Find the gain and phase as ω → ∞. [1p]
Hint: use the geometric position of the poles and zeros.

c) For sampling periods T = 150msec (msec is millisec), find the discretized transfer func-
tion H(z) using the following approximate discretization methods. For each case, discuss
the “stability” of the discretized system.

i) Forward-difference method [2p]

ii) Backward-difference method [2p]

iii) Tustin (or bilinear) method. [2p]

∗ For Bonus Point: For this case find the frequency-warping at ω0 determined in
part (a). Assume that a signal of the same frequency ω0 is filtered by both H(s)
and its Tustin discretization H(z). Do you think the digitally-filtered outcome
would be distorted (any different) from the analog-filtered output signal. Explain
your answer. [Extra 2p]

iv) ZOH equivalent approximation. [2p]

v) Pole-zero mapping. For this case, set the gain of the discretized system the same as
the gain of H(s) at zero frequency (ω = 0). [2p]
Hint: for pole-zero mapping, you map all the poles and zeros of the analog transfer
function using the unique mapping between the s-domain and the z-domain, and you
use those poles and zeros in the digital transfer function and, then, design the gain
accordingly.

For all the above steps you need to clearly show your calculations and derivations in your
response.



4. A magnetic levitation system controls the position of a ball in mid-air using the magnetic
field generated by an electric current I in a coil wrapped around an iron core, as in Fig. 1.

Figure 1: A Magnetic-levitation-system-diagram

Equation of motion for the ball is mẍ = mg + f(x, I), where m is the mass, g is the gravi-
tational constant, and f(x, I) represents the electromagnetic force. Linearizing the equation
about the equilibrium point x0 (with electromagnetic force at a current balancing the gravi-
tational force) we obtain:

mẍ = k1x+ k2i

where x represents the displacement about the equilibrium point x0 and i = I − I0. For this
question assume the following parameter values: m = 0.01kg, k1 = 10N

m , and k2 = 0.2N
A .

a) Compute the analog transfer function and comment on the open-loop stability. [2p]

G(s) =
X(s)

I(s)

b) Assuming the sampling period equal to T = 20 msec, compute the discretized transfer
function G(z) using impulse invariant method. [2p]

c) Consider the proportional controller with gain Kp in the forward path (open-loop).
Approximately draw the Nyquist diagram based on the location of open-loop poles for
Kp = 1. Discuss stability and number of unstable closed-loop poles using the Nyquist
criteria for different values of Kp. Find the values of Kp for which the closed-loop system
is stable (if any). Show your calculations and how you draw the Nyquist diagram. [4p]

d) A control engineer designed the following controller instead,

D(z) = 114.2
z − 0.53

z − 0.075

to get the following specifications for the closed-loop step response: rise time tr < 0.1s,
settling time ts < 0.4s, overshoot Mp < 20%. For this designed controller, find the
closed loop characteristic polynomial and briefly comment on the closed-loop stability.
Check with some calculations if the specifications are met and justify your answer. [4p]

e) For Bonus point: What is special about this controller D(z) and why do you think it
is considered for this system transfer function G(z)? [Extra 1p]


