Note: this exam has two pages and there are five problems (max 30 points).

Problem 1. The sphere shown in the figure moves on a circular path so that the angle θ and angular velocity $\dot{\phi}$ remain constants. Determine the rates of change of base vectors \mathbf{e}_r , \mathbf{e}_{ϕ} , and \mathbf{e}_{θ} of the spherical coordinate system for this case. Distance of the sphere from the attachment point, L, remains constant. (6 p.)

Problem 2. System in the figure consists of a thin disk (radius r) and a shaft (length R), which is hinged into point O as shown in the figure. The disk rolls (with constant velocity) without slipping so that one full cycle of its point C around the z-axis takes time T. Solve the angular velocity ω and angular acceleration α of the disk. Use the equations of the relative motion of a rigid body. Give the solutions in the xyz-coordinate system (base ijk) attached to the shaft (z axis always remains vertical as in the figure). (6 p.)

Problem 3. Derive the equations of motion for the conical spinning top of the figure in, 3-1-3 Eulerian angles related $\xi\eta\zeta$ -frame (the tip of spinning top aligns always with point origin O of the $\xi\eta\zeta$ -frame). Start from conservation law $\mathbf{m}=$ i. Components of the diagonal moment of inertia tensor are $I_{\xi\xi}=I_{\eta\eta}=I_0$ and $I_{\zeta\zeta}=I$. (6 p.)

MEC-E1010; Dynamics of Rigid Body, Exam

Problem 4. Find the kinetic energy T and the generalized force Q of the rotating pendulum of the figure. Using those, derive the equations of motion of the system. Assume that the distance r is constant, the angular velocity of the pendulum around its vertical axis $\dot{\phi}$ is constant, and that the mass m of the system is concentrated on a single point. Use $\theta = \theta(t)$ as the generalized coordinate (6 p.)

Problem 5. The system of the figure consists of three masses $(M_1, M_2, \text{ and } M_3)$ and four linear springs (spring constants $k_0, k_1, k_2, \text{ and } k_3$). Masses can only move into horizontal direction and there is no energy dissipation in the system. Derive the Lagrangian L = T - V for the system, and use the Lagrangian L to further derive the equations of motion of the system. (6 p.)

