ELEC-A7200 Signals and Systems

Autumn 2022, Midterm exam 1

October 21th 2022

1 Task

a) (2p.) Let $x_{1}(t)$ and $x_{2}(t)$ be orthonormal signals. Determine

$$
\left\langle x_{1}(t)-x_{2}(t), x_{1}(t)\right\rangle \quad \text { and } \quad\left\langle x_{1}(t)-x_{2}(t), x_{2}(t)\right\rangle
$$

b) (2p.) Let $x_{3}(t)=2 \cdot$ tria $\left(\frac{t}{4}\right)$, where

$$
\operatorname{tria}(t)= \begin{cases}1+t, & -1 \leq t<0 \\ 1-t, & 0 \leq t \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Express the signal $x_{4}(t)=\frac{d x_{3}(t)}{d t}$ using rectangular pulses of the form rect $\left(\frac{t-t_{0}}{T}\right)$, where

$$
\operatorname{rect}(t)= \begin{cases}1, & |t| \leq \frac{1}{2} \\ 0, & |t|>\frac{1}{2}\end{cases}
$$

Draw the signals $x_{3}(t)$ and $x_{4}(t)$.
c) (2p.) Calculate

$$
\int_{-\infty}^{\infty} x_{3}(t) \delta(t-2) d t
$$

where $\delta(t)$ is the Dirac delta function.
d) (4p.) Let $x_{5}(t)=e^{-t} u(t)$, where $u(t)$ is the unit step function:

$$
u(t)= \begin{cases}1, & t \geq 0 \\ 0, & t<0\end{cases}
$$

Calculate the convolution of the signal $x_{5}(t)$ with itself:

$$
y(t)=\int_{-\infty}^{\infty} x_{5}(\tau) x_{5}(t-\tau) d \tau
$$

Hint: it is probably a good idea to draw a picture.

2 Task

Consider the periodic signal $x(t)=2 \cos (20 \pi t)$.
a) (1p.) What are the period T_{0} and the frequency of the signal $x(t)$?
b) (3p.) Determine the coefficients of the exponential Fourier series of this signal:

$$
x_{k}=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} x(t) e^{-j 2 \pi \frac{k}{T_{0}} t} d t
$$

c) (2p.) Draw the two-sided amplitude spectrum and phase spectrum of this signal.
d) (2p.) Draw the one-sided power spectral density of this signal.
e) (2p.) Compute the average power of this signal.

3 Task

Consider the pulse $x(t)=\frac{A}{2} \operatorname{rect}\left(\frac{t}{4}\right)+\frac{A}{2} \operatorname{rect}\left(\frac{t}{2}\right)$. This pulse is shown in Figure 1.

Figure 1: Pulssi/puls/pulse $x(t)$.
a) (2p.) Determine the amplitude A of the pulse so that the energy of the pulse is 1 J .
b) (4p.) Find the Fourier transform $X(f)=\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t$ and the energy spectral density $|X(f)|^{2}$ of the signal $x(t)$.
c) The pulse $x(t)$ goes through an echoing channel. At the other end of the channel, the pulse $y(t)$ is received, which can be expressed as the convolution of the signal $x(t)$ and the so-called impulse response $h(t)$ of the channel:

$$
y(t)=\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau
$$

The impulse response is: $h(t)=\delta(t)+\delta(t-2)$, where $\delta(t)$ is the Dirac delta function.
i) (2p.) Find the Fourier transform $H(f)$ of the impulse response $h(t)$.
ii) (2p.) Find the Fourier transform $Y(f)$ and the energy spectral density $|Y(f)|^{2}$ of the signal $y(t)$.

